Prove that the sum of two even integers is even.

Restatement in symbols: $\forall x, y \in \mathbb{Z}^{\text {even }} \operatorname{Even}(x+y)$.
Proof:
[Label where your proof starts.]
Let x and y be arbitrary even integers.
[This is a prose form of universal instantiation.]
By the definition of even, there exist integers k and p such that $x=2 k$ and $y=2 p$.
[We know x and y are even, so we invoke the definition of even. Notice that because the definition of even involves an existential quantifier, we had to pick two different variable names.]

By algebra, $x+y=2 k+2 p=2(k+p)$ [We are trying to make $x+y$ look like 2.(an integer)].
Let $m=k+p . m \in \mathbb{Z}$ by the closure of the integers under addition. [Must show that this is an integer.]
$x+y=2 m$, and therefore $x+y$ is therefore even by the definition of even.
[We have shown what we wanted to prove, that $x+y$ is even, so we may stop here. Some people would continue with the following:]

Because x and y were chosen arbitrarily, we know $\forall x, y \in \mathbb{Z}^{\text {even }} \operatorname{Even}(x+y)$.
[The statement above is a prose form of universal generalization.]

Alternative restatement in symbols: $\forall x, y \in \mathbb{Z}(\operatorname{Even}(x) \wedge \operatorname{Even}(y)) \rightarrow \operatorname{Even}(x+y)$.
Proof:
[Label where your proof starts.]
Let x and y be arbitrary integers.
[This is a prose form of universal instantiation.]
Assume x and y are even.
[This is a prose form of opening a conditional world.]
By the definition of even, there exist integers k and p such that $x=2 k$ and $y=2 p$.
[We know x and y are even, so we invoke the definition of even. Notice that because the definition of even involves an existential quantifier, we had to pick two different variable names.]

By algebra, $x+y=2 k+2 p=2(k+p)$ [We are trying to make $x+y$ look like 2.(an integer)].
$k+p \in \mathbb{Z}$ by the closure of the integers under addition.
[Must show that this is an integer.] $x+y$ is therefore even by the definition of even.
[As in the first example, we have shown what we wanted to prove, that $x+y$ is even, so we may stop here. Some people would continue with language describing the closing of the conditional world, and the universal generalization.]

