Prove that if x is even, then $x+5$ is odd.
Restatement in symbols: $\forall x \in \mathbb{Z}^{\text {even }} \operatorname{Odd}(x+5)$.
Proof:
[Label where your proof starts.]
Let x be an arbitrary even integer.
[This is a prose form of universal instantiation.]
By the definition of even, there exists an integer k such that $x=2 k$.
[We know x is even, so we invoke the definition of even.]
By algebra, $x+5=2 k+5=2 k+4+1=2(k+2)+1$.
[We are trying to make $x+5$ look like $2 \cdot($ an integer $)+1$].
Let $m=k+2 . m \in \mathbb{Z}$ by the closure of the integers under addition. [Must show that this is an integer.] $x+5=2 m+1$, and therefore $x+5$ is therefore odd by the definition of odd.
[We have shown what we wanted to prove, that $x+5$ is even, so we may stop here. Some people would continue with the following:]

Because x was chosen arbitrarily, we know $\forall x \in \mathbb{Z}^{\text {even }} \operatorname{Odd}(x+5)$.
[The statement above is a prose form of universal generalization.]

Alternative restatement in symbols: $\forall x \in \mathbb{Z} \operatorname{Even}(x) \rightarrow \operatorname{Odd}(x+5)$.
Proof:
[Label where your proof starts.]
Let x be an arbitrary integer.
[This is a prose form of universal instantiation.]
Assume x is even.
[This is a prose form of opening a conditional world.]
By the definition of even, there exists an integer k such that $x=2 k$.
[We know x is even, so we invoke the definition of even.]
By algebra, $x+5=2 k+5=2 k+4+1=2(k+2)+1$.
[We are trying to make $x+5$ look like $2 \cdot($ an integer $)+1$].
Let $m=k+2 . m \in \mathbb{Z}$ by the closure of the integers under addition. [Must show that this is an integer.]
$x+5=2 m+1$, and therefore $x+5$ is therefore odd by the definition of odd.
[As in the first example, we have shown what we wanted to prove, that $x+5$ is odd, so we may stop here. Some people would continue with language describing the closing of the conditional world, and the universal generalization.]

