Discrete Structures, Fall 2023, Homework 9

You must write the solutions to these problems legibly on your own paper, with the problems in sequential order, and with all sheets stapled together.

- 1. Prove the following statement using an *element proof*: For any sets A, B, C, and D, if $C \subseteq (D \cup A)$ and $B \subseteq D^c$, then $C \cap B \subseteq A$.
- 2. Prove the following statement using an *element proof*:

For any sets A, B, and C, if $A \subseteq C$ and $B \subseteq C$, then $A \cup B \subseteq C$.

Hint: You will need to divide the proof into two cases at some point, like in practice problem 2 below.

SET PRACTICE PROBLEMS: (These are not part of the homework; solutions are on the next page.)

- 1. Prove the following statement using an *element proof*: For any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.
- 2. Prove the following statement using an *element proof*: For any sets A, B, and C, if $A \subseteq B$, then $(A \cup C) \subseteq (B \cup C)$.
- 3. Prove the following statement using an *element proof*: For any sets A, B, C, D, and E, if $A \subseteq (B \cup C)^c$ and $D \subseteq E$, then $(A \cap D) \subseteq (E - B)$.

SOLUTIONS TO PRACTICE PROBLEMS:

1. Prove the following statement using an *element proof*:

For any sets A, B, and C, if $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Proof:

Let A, B, and C be arbitrary sets.

Assume $A \subseteq B$ and $B \subseteq C$.

[Note: We are trying to prove that $A \subseteq C$, so let's assume x is an arbitrary element in the left side of the subset (A) and show x must be in the right side (C).]

Let x be an arbitrary element in U. Assume $x \in A$.

[Note: The line above could also be written as "Let x be an arbitrary element in A."]

 $x \in A$ (from above)

 $x \in B$ (because $A \subseteq B$ and $x \in A$)

 $x \in C$ (because $B \subseteq C$ and $x \in B$)

Because we assumed x was an arbitrary element in A and we showed $x \in C$, we can conclude (by the definition of subset) that $A \subseteq C$.

2. Prove the following statement using an *element proof*:

For any sets A, B, and C, if $A \subseteq B$, then $(A \cup C) \subseteq (B \cup C)$.

Proof:

Let A, B, and C be arbitrary sets.

Assume $A \subseteq B$.

[Note: We are trying to prove that $(A \cup C) \subseteq (B \cup C)$, so let's assume x is an arbitrary element in the left side of the subset $(A \cup C)$ and show x must be in the right side $(B \cup C)$.]

Let x be an arbitrary element in U. Assume $x \in A \cup C$.

[Note: The line above could also be written as "Let x be an arbitrary element in $A \cup C$."]

 $x \in A \cup C$ (from above)

 $x \in A \lor x \in C$ (def of union)

[Note: Because we don't know if $x \in A$ or if $x \in C$, we will split the proof into cases, one case where we assume $x \in A$ and one where we assume $x \in C$. We will make sure both cases lead to the same conclusion, that $x \in B \cup C$. And then we will use the rule of dilemma/proof by division into cases to conclude that whichever side of the "or" statement above is true $(x \in A \lor x \in C)$, since both sides lead to the same conclusion (that $x \in B \cup C$), that the conclusion must be true in general.]

Case 1: Assume $x \in A$.

 $x \in B \quad (\text{because } x \in A \text{ and } A \subseteq B)$ $x \in B \lor x \in C \quad (\text{disjunctive addition})$ $x \in B \cup C \quad (\text{def of union})$

Case 2: Assume $x \in C$.

 $x \in B \lor x \in C$ (disjunctive addition)

 $x \in B \cup C \qquad (\text{def of union})$

Since both cases above lead to the same conclusion, we can conclude that $x \in B \cup C$.

Because we assumed x was an arbitrary element in $A \cup C$ and we showed $x \in B \cup C$, we can conclude (by the definition of subset) that $A \cup C \subseteq B \cup C$.

3. Prove the following statement using an *element proof*:

For any sets A, B, C, D, and E, if $A \subseteq (B \cup C)^c$ and $D \subseteq E$, then $(A \cap D) \subseteq (E - B)$.

Proof:

Let A, B, C, D, and E be arbitrary sets.

Assume $A \subseteq (B \cup C)^c$ and $D \subseteq E$.

[Note: We are trying to prove that $(A \cap D) \subseteq (E - B)$, so let's assume x is an arbitrary element in the left side of the subset $(A \cap D)$ and show x must be in the right side (E - B).]

Let x be an arbitrary element in U. Assume $x \in A \cap D$.

[Note: The line above could also be written as "Let x be an arbitrary element in $A \cap D$."]

 $x \in A \cap D$ (from above)

 $x \in A \land x \in D$ (def of intersection)

 $x \in A$ (conjunctive simplification)

 $x \in D$ (conjunctive simplification)

 $x \in (B \cup C)^c$ (because $x \in A$ and $A \subseteq (B \cup C)^c$)

 $\sim (x \in (B \cup C))$ (def of complement)

 $\sim (x \in B \lor x \in C)$ (def of union)

 $\sim (x \in B) \land \sim (x \in C)$ (deMorgan's law)

 $\sim (x \in B)$ (conjunctive simplification)

 $x \in B^c$ (def of complement)

[Note: We also could have turned $x \in (B \cup C)^c$ into $x \in (B^c \cap C^c)$ through the set version of deMorgan's laws, and proceeded from there. We would still want to get $x \in B^c$.]

 $x \in E$ (because $x \in D$ and $D \subseteq E$)

 $x \in E \land x \in B^c$ (conjunctive addition)

 $x \in E \cap B^c$ (def of intersection)

 $x \in E - B$ (def of set difference)

Because we assumed x was an arbitrary element in $A \cap D$ and we showed $x \in B - E$, we can conclude (by the definition of subset) that $A \cap D \subseteq E - B$.