
Rubric for Databases Final Project

Deliverables:

• You will turn in all the code for the final website application, including Python files, schemas for
each table (if they have changed from previous milestones), the initial data you used (CSV files,
Excel files, or SQL INSERT statements).

• Your website can work in any way you’d like, but it should be logical from a user perspective. You
do not need to have a login/logout system, but if you do, it should work appropriately (though the
security of this will not be evaluated).

o Your website, for full credit in the functionality section (see below) should go beyond basic
display of tables that are pulled straight from the underlying data. In other words, there
should be some functionality that requires you to write more sophisticated queries than
just “SELECT x, y, z FROM table t.” You should have some queries that include joins
(hopefully multiple joins), as well as aggregation. The goal is not to write complicated
queries for the sake of complicated queries, but to provide the most useful user
experience.

o The one specific requirement for your website is it should include at least one dashboard.
This should be a central page that includes multiple (say, at least 5) visualizations (graphs
or charts) illustrating something about the data you have used in your project. This is a
good place where you can write more complicated queries that might not fit elsewhere. In
other words, the dashboard can be a place to display an “overview” of the state of your
database. In other words, imagine creating a class registration system for Rhodes (similar
to our labs done in class with NiceGUI). From perspective of a “regular” user (a student),
all they will need to do is browse, add, and drop classes. However, a dashboard will be
useful from the registrar’s perspective to provide a real-time overview of the course
registration system that displays, for instance, what the most popular classes are, the most
popular course timeslots, the most popular professors, whether there are any classes that
have abnormally low or high enrollments, etc.

o Alternatively, these charts or graphs for the dashboard can be spread around your website
in other places, if that makes more sense from a functionality standpoint.

• You should include a document that tells me how to run your project. This can be as simple as a
text file that states which Python file I should execute that starts the website. You can also
include, in this document, any pieces of the project you did not accomplish and rationale for why
you did not accomplish them.

(See specific grading criteria on next page.)

Category Points Criteria
Functionality and
Completeness

25 Website application performs all major operations as described in previous
milestones, or justification is provided. Application is stable, with well-
tested core features. Partial credit for bugs or unimplemented functionality.

Database Design
and Queries

25 At least 8 well-structured, normalized tables. Schema reflects good
relational modeling. Appropriate use of SQL joins, aggregation, data type
selection. At least one functional operation each for SELECT, INSERT,
UPDATE, and DELETE (or justification for why we aren’t using one or more of
them).

Dashboard
Implementation

10 Dashboard is present and meaningful. It should present aggregated or
summarized data (counts, totals, etc.) and offer users a high-level overview.
The layout should be clean and visualizations should be easy to understand.

Usability and
Interface Design

10 Pages are logically structured; navigation is intuitive. No visual polish
required, but the user should clearly understand how to access each feature
and what each operation does. All operations needed to run the application
are implemented through the web interface (don’t have to do anything
through the command line) and work smoothly.

Innovation and
Ambition

10 Goes beyond minimum: interesting data features, non-obvious design
decisions, useful extensions, or domain-specific cleverness. May include
real-world data, unique workflows, or thoughtful user scenarios.

Code Quality 10 Code is modular, readable, organized, and documented with comments
appropriately. Good use of functions, error handling, and file structure.

Oral Presentation 10 Presentation is well-organized and demonstration works. All team members
present during demo or at least we know what each member’s contributions
are.

