
E/R Models

(Chapter 4)

Three Pieces of Course

§ Database design
–Modeling data

§ Database programming
– SQL (other languages)
– Constructing applications

§ Database implementation
– Learning how the guts work

Why Learn About Database Modeling?

§ The way in which data is stored is very important for
subsequent access and manipulation by SQL.

§ Properties of a good data model:
– It is easy to write correct and easy-to-understand queries.
– Minor changes in the problem domain do not change the

schema.
– Major changes in the problem domain can be handled without

too much difficulty.
– Can support efficient database access.

Purpose of the E/R Model

§ The E/R model allows us to sketch the design of a
database informally.
– Represent different types of data and how they relate to

each other

§ Designs are drawings called entity-relationship diagrams.
§ Fairly mechanical ways to convert E/R diagrams to real

implementations like relational databases.

Purpose of E/R Model

§ When designing E/R diagrams,
– forget about relations/tables!
– only consider how to model the information you

need to represent in your database.

Tools

§ Entities (‘entity sets’)

§ Relationships
and mapping constraints

§ Attributes

N M

P

Entity Sets

§ Entity = "thing" or "object instance" or "noun"
§ Entity set = collection of similar entities.
– Similar to a class in object-oriented languages.

(whereas an entity is an instance of that class, or an
object)

§ Attribute = property of an entity set.
– Generally, all entities in a set have the same set of

properties.
– Attributes can only be “primitive” types, like strings,

ints, floats. No “collection” types or objects.

E/R Diagrams

§ In an entity-relationship diagram, each entity
set is represented by a rectangle.

§ Each attribute of an entity set is represented
by an oval, with a line to the rectangle
representing its entity set.

Example: Entity Sets

Relationships

§ A relationship connects two or more entity
sets.

§ It is represented by a diamond, with lines to
each of the entity sets involved.

§ Don’t confuse ‘relationships’ with ‘relations’!

Instance of an E/R Diagram

§ E/R diagram describes a schema, not the DB
content itself.

§ However, we can visualize what the DB tuples
might look like by thinking of an instance of
the E/R diagram:
– contains instances of entity sets and
– instances of relationship sets.

Instance of an Entity Set

§ For each entity set, an instance of that entity
set stores a specific set of entities.

§ Each entity is a tuple containing specific values
for each attribute.

§ What are the examples of entity sets for our
relations so far?

Instances of (binary) relationship sets

§ Binary relation with entities E and F:
§ Instance is a set of pairs {(e, f) : e is in E and f is in

F}
– Instance need not relate every tuple in E with every

tuple in F. Depends on what the relationship means.
§ (At the moment) Hard to visualize an instance of

relationship set as a table (or relation) because e
and f are entities, not simple scalar values.

Multiplicity of binary relationships

§ Many-one from A to B: when each entity in A
is connected to at most one entity in B.
– If I give you a particular instance of entity A, you

can give me back at most one entity in B.
– But, each instance of B may have multiple As.

§ One-one: when a relationship is many-one
from A to B and from B to A.

§ Many-many: everything else.

Many-Many Relationships

§ In a many-many relationship, an entity of
either set can be connected to many entities
of the other set.

Many-One Relationships

§ Some binary relationships are many-one from
one entity set to another.

§ Each entity of the first set is connected to at
most one entity of the second set.

§ But an entity of the second set can be
connected to zero, one, or many entities of
the first set.

One-One Relationships

§ In a one-one relationship, each entity of either
entity set is related to at most one entity of the
other set.

Representing Multiplicity

§ Show a many-one relationship by an arrow entering
the "one" side.

§ Show a one-one relationship by arrows entering both
entity sets.

Different kinds of relationships

many-many

Profs. Advise Students

Take CoursesStudents Office RoomsProfs.

many-one one-one

Exactly one

§ In some situations, we can also assert “exactly
one,” i.e., each entity of one set must be
related to exactly one entity of the other set.
To do so, we use a rounded arrow.

Example: Exactly One

§ Consider favorite-course between Students
and Courses.

§ Some courses are not the favorite-course of
any student, so an arrow pointing into
Students would be inappropriate.

§ But a student has to have a favorite-course.

Students CoursesFavorite
course

E/R Diagrams Day 2: Review

§ Entity sets (rectangles)
§ Attributes (ovals)
§ Relationships (diamonds connecting entity

sets)
§ Multiplicity of relationships (arrows)
§ Running examples: Workday DB, Amazon DB

Attributes on relationships

§ Attributes can also be placed on a
relationship, as well as on an entity set.

§ Only necessary if the attribute cannot be
determined from a single entity instance.

§ Example:
– Students and Courses: where do we store grades?

Multiway relationships

§ Rare
§ An arrow pointing to entity set E means if we

select one entity from each of the other entity
sets in the relationship, those entities are
related to (at most/exactly) one entity in E.

§ Multiway relationships can often be converted
into multiple binary relationships. (later)

Roles in Relationships

§ Can the same entity set appear more than
once in the same relationship?

§ Prerequisite relationship between two
Courses

§ But which course is the pre-req?

Roles in Relationships

§ Label the connecting lines with the role of the
entity

Parallel Relationships

§ Can there be more than one relationship
between the same pair of entities?

§ TA and Take relationship between Students
and Classes

Converting Multiway to Binary

§ It is easy to convert a multiway relationship to
multiple binary relationships
– Create a new connecting entity set. Think of its

entities as the tuples in the relationship set for the
multiway relationship

– Introduce many-one relationships from the
connecting entity set to each of the entities in the
original relationship

– If an entity set plays > 1 role, create a relationship
for each role

Try this

§ Partners or triples.
§ Design an E/R diagram for a bank, including

info about customers and accounts.
§ Customer info: name, addr, phone, SSN.
§ Account info: type (checking/savings),

balance.
§ Accounts may have multiple customers;

customers may have multiple accounts.

Try this

§ What if an account can have only one
customer?

§ What if a customer can have only one
account?

§ What if a customer can have multiple
addresses and multiple phones?

§ (Think pre-cell-phones) What if we want to
associate phones with addresses?

Is-A Hierarchies (Subclasses)

§ Certain entities might need to store special
properties that not all entities possess.

§ Create two entity sets: a “super-entity” and a
“sub-entity” and connect them with a Is-A
relationship (triangle instead of diamond).

Good design principles (4.2)

§ Faithfulness
– Entity sets & attributes should reflect reality in

choice of attributes and multiplicity of
relationships.

– The real-world situation can dictate what
faithfulness means.

– E/R diagram cannot convey all the information.
– Consider Students/Courses/Profs & multiplicity –

can be different ways to do this diagram.

Good design principles

§ Avoid redundancy
–Watch out for an attribute duplicating a

relationship.
§ Choosing the right relationships
– Does every relationship express all the

information you need it to express?

Attribute or entity set?

§ If a concept can be broken down into
individual components that need to be stored,
it probably should be an entity set.

§ If a concept is going to be involved in multiple
relationships, it probably should be an entity
set.

§ Note: a common mistake in E/R diagrams is to
have an attribute of any entity set that really
should be a relationship to another entity.

Keys in E/R diagrams (4.3)

§ Entity sets will have one or more keys.
– Customary to choose a primary key and underline

the attributes.
§ Possible for an entity set's key attributes to

belong to another entity set in certain
situations.
– Is-a hierarchies
– weak entity sets (later)

One perspective on real-world keys

§ Multi-attribute and/or string keys…
§ …can be time consuming and sometimes may not guarantee a lack

of duplicates.
– movie(title, year, date-released, etc)
– title + year = lots to type to identify a movie in SQL.
– integer key movieID saves typing!

§ …break encapsulation
– patient(first, last, DOB, etc)
– Are these keys being transmitted in an insecure manner? Is this a

security/privacy risk?
– integer key patientID fixes this.

§ …are brittle
– Name change? Two movies with the same name/year?
– Unique integer ID always exists, never changes.

Referential integrity in E/R

§ Referential integrity: requires every value of
an attribute in one relation to appear as the
value of an attribute in another (or the same)
relation.

§ Enforced through multiplicity arrows
§ Degree constraints can be added to further

restrict multiplicity.

Try US Congress/Iron Chef handout

Weak entity sets (4.4)

§ A weak entity set is an entity set whose (primary)
key contains attributes from one or more other
entity sets.

§ In other words, an entity set E is weak if in order
to identify entities of E uniquely, we need to
follow one or more many-one relationships from
E and include the key of the related entity sets in
E's key.

§ Possible that all attributes in a weak entity set's
key come from other entity sets.

Example
§ Consider players in a sports league:
– Name is not a key (might be duplicate names)
– Uniform number is certainly not a key (numbers will

be duplicated across teams)
– But number + team should be a key

§ Use double border for weak entity sets and their
supporting many-one relationships.

Players TeamsPlays-
on

name nameuni_number

How about courses and departments?

Keys for a weak entity set

§ A relationship R from a weak entity set E to F
is supporting if
– R is a binary, many-one relationship from E to F.
– R has referential integrity from E to F (curved

arrow into F).
§ F supplies its key attributes to define E's key.
§ If F itself is a weak entity set, then we must

find F’s supporting relationships and also use
the keys from those supporting entity sets.

Where do weak entity sets come
from?

§ Cause 1: Implicit hierarchies not from an "is-a"
relationship.
– A player “belongs to” a team, or a flight “is flown by”

an airline.
– Happens when a piece of a key is represented as an

entity set rather than an attribute.
• Can (technically) be solved by putting a unique ID on an

entity set, but sometimes this causes more trouble than it’s
worth.

– "is-a" hierarchies seem to lead to weak entity sets
(subclasses), but we don't notate them with double
borders because their hierarchical relationships are
always one-one.

Where do weak entity sets come
from?

§ Cause 2: Connecting entity sets created by
eliminating a multi-way relationship.
– Often, connecting entity sets have no attributes of

their own; they must pick up their key attributes
from the entity sets they connect.

– Example: A CUSTOMER rents a CAR from a
SALESPERSON.

Converting E/R diagrams to relational
designs

§ Entity set -> Relation
– Attribute of entity set -> attribute of relation
– Key of entity set -> primary key of relation

§ Relationship -> Relation
– Attribute of relationship -> attribute of relation
– Key attribute of connecting entity set -> key

attribute of relation
§ Special cases: weak entity sets, "is-a"

hierarchies, combining relations.

Handling multiple roles

Friend-
of

Person

name

email

Requester

Recipient

If an entity set E appears k > 1 times in a relationship
R, then the key attributes for E appear k times in the
relation for R, appropriately renamed.

Handling weak entity sets

§ For each weak entity set W, create a relation
with attributes:
– attributes of W
– attributes of supporting relationships for W
– key attributes of supporting entity sets for W

Supporting Relationships

§ Schema for Departments is Departments(Name)
§ Schema for Courses is Courses(Number,

DeptName, CourseName, Classroom,
Enrollment)

§ What is the schema for Offer?

Supporting Relationships

§ What is the schema for offer?
– Offer(Name, Number, DeptName)
– But Name and DeptName are identical, so the schema

for Offer is Offer(Number, DeptName)
– The schema for Offer is a subset of the schema for the

weak entity set, so we can dispense with the relation
for Offer.

– Key point: Don't make a relation for supporting
relationships.

Summary of Weak Entity Sets

§ If W is a weak entity set, the relation for W has a schema
whose attributes are
– all attributes of W
– all attributes of supporting relationships for W
– for each supporting relationship for W to an entity set E

• the key attributes of E

§ There is no relation for any supporting relationship for W

Combining Relations

§ Consider many-one Teach relationship from
Courses to Professors

§ Schemas are:
Courses(Number, DepartmentName, CourseName,
Classroom, Enrollment)
Professors(Name, Office, Age)
Teach(Number, DepartmentName, ProfessorName,
Office)

Combining Relations
Courses(Number, DepartmentName, CourseName, Classroom,
Enrollment)
Professors(Name, Office, Age)
Teach(Number, DepartmentName, ProfessorName, Office)

§ The key for Courses uniquely determines all attributes of
Teach

§ We can combine the relations for Courses and Teach into
a single relation whose attributes are
– All the attributes for Courses,
– Any attributes of Teach, and
– The key attributes of Professors

Rules for Combining Relations

§ We can combine into one relation Q
– The relation for an entity set E
– all many-to-one relationships R1, R2, …, Rk from E to

other entity sets E1, E2, …, Ek respectively
§ The attributes of Q are
– All the attributes of E
– Any attributes of R1, R2, …, Rk
– The key attributes of E1, E2, …, Ek

§ Combining a many-many relationship with one of
its entity sets often leads to redundancy. You
probably never want to do this!

Is-a to Relational

§ Three approaches:
– E/R viewpoint
– Object-oriented viewpoint
– “Flatten” viewpoint

Rules Satisfied by an Is-a Hierarchy

§ The hierarchy has a root entity set.
§ The root entity set has a key that identifies

every entity represented by the hierarchy.
§ A particular entity can have components that

belong to entity sets of any subtree of the
hierarchy, as long as that subtree includes the
root.

Example ISA hierarchy

Is-a to Relational Method I: E/R
Approach

§ Create a relation for each entity set
§ The attributes of the relation for a non-root

entity set E are
– the attributes forming the key (obtained from the

root) and
– any attributes of E itself

§ An entity with components in multiple entity sets
has tuples in all the relations corresponding to
these entity sets

§ Do not create a relation for any is-a relationship
§ Create a relation for every other relationship

Is-a to Relational Method II: Object
Oriented Approach

§ Treat entities as objects that are members of a
particular subtree in the tree.
– Subtrees must contain the root.
– Subtrees may contain more than one entity set.

§ What are all the logically-possible classes for
books in our hierarchy?

Is-a to Relational Method II: Object
Oriented Approach

§ Enumerate all subtrees of the hierarchy that
contain the root.

§ For each such subtree,
– Create a relation that represents entities that have

components in exactly that subtree.
– The schema for this relation has all the attributes

of all the entity sets in that subtree.

Is-a to Relational Method III: “Flatten”
Approach (or "NULLs")

§ Make one relation for the whole hierarchical
structure.

§ Use NULL for any attribute that is not defined
for a particular entity.

Comparison of the Three Approaches

§ Trade-offs
– In general, we want to minimize joins (takes time)

and also minimize duplicated or redundant
information (takes space [memory]).

– It is expensive to answer queries involving several
relations (advantage: flatten)

– E/R approach works well for some queries where
info is duplicated among relations.

– E/R approach is hard for other queries because we
may need joins.

Comparison of the Three Approaches

§ Number of relations for n relations in the
hierarchy
–We like to have a small number of relations
– Flatten

• 1

– E/R
• n

– OO
• Can be 2^n

Comparison of the Three Approaches

§ Redundancy and space usage
– Flatten

• May have a large number of NULLs
• (also prevents you from using NULL to denote

something besides class membership)
– E/R

• Several tuples per entity, but only key attributes are
repeated

– OO
• Only one tuple per entity

