Relational Algebra
Language for querying $D B s$.
thy?

- Easier to conte, to learn
- Easy do optimize (query optimize)

Simitar to boolean algebra
operates on T / F values $p^{\wedge} q$

$$
(s \vee r) \rightarrow a
$$

R.A. operates on relations
"Regula" algebra?
Boolean algebra $\}$ operators

$$
\longrightarrow \wedge, \vee, \neg \rightarrow
$$

R.A. operators

Assume we have 2 relations, called $R \& S$. that R \& S have the same schema. (sore column)

3 operator form set theory

- Union: RuS: new relation wi all rows of R followed by all. now s of S
- Intersection = $R \cap S$: new relation w/ de rows that $R+S$ have in common
- Difference: R-S: new relation w/ all nos of R that cont appear in S.
Ex: Students u Professors

Students 1 Profs

Last	First
Largbothen	Neville

Gryfindors - Students \#rows? (2) Students - Gryffindirs \#rows? (1)

Projection operator TT
\longrightarrow Takes a relation \rightarrow gives a new relation w/ only certain columns.
$T_{A_{1}, A_{2}, A_{3} \ldots}(R) \rightarrow$ make a new relation from R withomly attributes $A_{1}, A_{2}, A_{3} \ldots$
$\varepsilon_{x}: T_{\text {Name }}$ (Students):

$$
T_{\text {major }}(S t u d e n t s): \frac{\text { major }}{\left.\frac{c s}{\frac{\text { math }}{\rho^{\prime h} \text { sics }}} \right\rvert\,}
$$

$\prod_{\text {dept }}(\operatorname{courses}): \#$ rows? (4)

$$
\mathbb{T}_{\text {dept, seats }}(\operatorname{Cov} \text { (Bes) }): \begin{array}{l|l}
\text { clepts } & \text { seats } \\
\hline \text { cs } & 20 \\
c \mathrm{cs} & 15 \\
\vdots & \vdots \text { rows } \\
&
\end{array}
$$

O Sigma operator/Selection opera for: takes a relatim a gives a new rel'n w/ only certain sews
$\sigma_{\text {condition }}(R)$: give me all rows of R where the condition is true.

$$
\begin{aligned}
& O_{\text {major }=c s}(\text { Stuctents }) \rightarrow \begin{array}{c}
\text { Name } 10 \text { near } \\
\begin{array}{c}
\text { Alice } \\
\text { Card } \\
\text { Dan }
\end{array}=1= \\
\text { Date }
\end{array} \\
& \sigma_{\text {dept }}=\text { music }(\text { Courses }) \rightarrow \sigma_{\text {májs }}=\operatorname{cs} \wedge \text { age } \leq 19 \text { (Students) }
\end{aligned}
$$

Alice x Carol
Rewrite without using " \triangle "

Rho ρ-renaming (relatim or attributes) $\int_{s\left(A, A_{2}, A_{3} \ldots\right)}(R)$-take relation R, make a new relation called S w/ same column as R, but renamed to $A_{1}, A_{2}, A_{3} \ldots$.
$\rho_{s}(R)$ - take $R x$ make a copy of it, renamed ti S

Combing / Chairing
Combining - give me a fable of all the names of CS majors $T_{\text {name }}\left(\sigma_{\text {major }}=c s(S t u d e n t s)\right) \quad\left\{\sigma_{\text {major cs }}\left(T_{\text {man }}(S t u d t a)\right)\right.$

- Give re CRN a nares of all math or CS courses $\omega /<20$ seats.

$$
\left.\prod_{\text {cm, nate }}\left(\sigma_{(\text {dept }}=\operatorname{cs} v_{\text {cp ot }}=\text { math }\right) \hat{S}_{\text {seats }<20}(\text { Courses })\right)
$$

Combining Multiple Relations

- Cartesian product
$R \times S$: Make a new relation pairing each ow of $R \quad$ weever possible now in S.
New rel'n always has (\#n ow in $R) \times(\#$ onus in $)$

Ex: List of all possible pairs of math a CS majors.
get a relation w/ all meth majors:
Name Bub
Eva
got CS majors
$\rightarrow 0 \times 2$

