
Big Oh

Intro/Motivation

What is efficiency?

(Example 1)
float mean(int a[], int n) {

sum = 0; (line 1)
i = 0; (line 2)
while (i < n) { (line 3)

sum += a[i]; (line 4)
i++; (line 5)

}
return sum / n; (line 6)

}

Def'n of big-oh
T(n) is O(f(n)) if and only if

there exists some positive constant c such that
T(n) <= c * f(n) for all sufficiently large values of n.

Even more formally:

T(n) is O(f(n)) if and only if
∃c, n0 ∀n > n0 T(n) <= c * f(n)

[c and n0 should be positive real numbers]

T(n) is O(f(n)) if and only if

there exists some constant c such that
T(n) <= c * f(n) for all sufficiently large values of n.

Even more formally:

T(n) is O(f(n)) if and only if
∃c, n0 ∀n > n0 T(n) <= c * f(n)

More

Let's show T(n) = 3n+4 = O(n)

Rules of big-oh

Rules of big-oh

Why do we do this?
• Why not just use a stopwatch?

• Why not just report T(n) for an algorithm?

Why do we do this?
• Why drop coefficients and only keep the term that

grows the fastest?

Examples

Categories

Graph (+ website)

Shortcuts
• You don't have to determine the exact T(n) for a

section of code to compute big-oh. There are
shortcuts.

Loops: (Example 2)
for (int i = 0; i < n; i++) {

System.out.println("Hello world!")
}

Shortcuts
Nested loops: (Example 3)
for (int i = 0; i < n; i++) {

for (int j = 0; j < n + 25; j++) {
System.out.println("Hello world!")

}
}

Shortcuts
Consecutive Statements: (Example 4)
for (int i = 0; i < n; i++)
a[i]=0;

for (int i = 0; i < n; i++) {
for (int j = 0; j < n + 25; j++) {
System.out.println("Hello world!")

}
}

Logarithmic time
• An algorithm takes logarithmic time --- O(log n) ---

if it repeatedly cuts the size of the problem by a
constant fraction (usually ½).
• Binary search is O(log n).

What is the tightest big-oh?

#1

#2

#3

#4

#5

#6

#7

#8

