cl ass Node

int key;

Node | eft = null,;

Node right = null,;
}

public class BST {
private Node root = null;

| **

* Add a new key into this BST. Returns true for a successful add (when the key wasn’t already in

* the BST), and false if unsuccessful (when the key was already there).
*/
public boolean add(int newKey)

if (root == null) // tree is empty

Node newNode = new Node();
newNode. key = newKey;

root = newNode;

return true;, // successful add

el se
return add(root, newKey);

}

private boolean add(Node curr, int newKey)

if (curr.key == newKey) // newKey already exists, can’t add it twice
return false

else if (newKey < curr.key) // key should be inserted in the left branch
if (curr.left == null) // is the left branch empty?
Node newNode = new Node();
newNode. key = newKey;
curr.left = newNode;
return true;, // successful add

el se
return add(curr.left, newKey);

el se // key should be inserted in the right branch
if (curr.right == null) // is the right branch empty?
Node newNode = new Node();
newNode. key = newKey;

curr.right = newNode;
return true;, // successful add

el se
return add(curr.right, newKey);
}
}
/**
* Return true if this BST contains searchKey, false otherw se.
*/

public boolean contains(int searchKey)

return contains(root, searchKey);

private boolean contai ns(Node curr, int searchKey)

if (curr == null)

return false, // reached a leaf node, not found —> key not in tree
el se if (searchKey == curr.key)

return true; // key found

else if (searchKey < curr.key) // searchKey too small -> go left
return contains(curr.left, searchKey);

el se // searchKey too big —> go right
return contains(curr.right, searchKey);

/)\')\'
* Renpbve a key fromthe BST. Returns true for a successful renoval (when the key was in the tree
* and has been renpved), or false if the key wasn't in the BST in the first place
*/

public boolean renove(int renoveKey)

Node curr = root; // Will point to the node to be deleted.
Node parent = null, // wWill point to the parent of the node to be deleted.
while (curr !'= null && curr.key != renoveKey)

// Descend through the tree, looking for the node that contains removekey.
// Stop when we find it, or when we encounter a null pointer.
parent = curr
1 f (removeKey < curr. key)
curr = curr.left;
el se
curr = curr.right;
}
// At this point, curr is null, or we’ve successfully found removeKey in the tree.
if (curr == null)
return false;, // removeKey wasn’t found in the tree.

// We’ve found removeKey at the "curr" node, so remaining code will
// delete curr from the tree.

// Handle 2-child situation first.
if (curr.left !'= null & curr.right != null)

// Find inorder successor of curr.
Node successor = curr.right;

Node successorParent = curr

whil e (successor.left != null)

successor Parent = successor
successor = successor.|left;

// Copy the inorder successor’s key into curr.

curr.key = successor. key;

// Continue with the code below that will delete the successor node, which
// is guaranteed to have 0 children or 1 child.

curr = successor;

parent = successor Parent;

}

// Handle 0-child or 1l-child situation.
Node subtree; // Will point to the subtree of curr that exists, if there is one,
// or null if it has 0 children.

if (curr.left == null & curr.right == null) // 0 children
subtree = null

else if (curr.left != null)
subtree = curr.left

el se

subtree = curr.right

// Attach subtree to the correct child pointer of the parent node, if it exists.
// If there is no parent, then we are deleting the root node, and the subtree becomes the new root.

if (parent == null)
root = subtree

else if (parent.left == curr) // Deleting parent’s left child.
parent.left = subtree

el se // Deleting parent’s left child.

parent.right = subtree

return true, // successful deletion.

