
class Node
{
 int key;
 Node left = null;
 Node right = null;
}

public class BST {
 private Node root = null;

 /**
 * Add a new key into this BST. Returns true for a successful add (when the key wasn’t already in
 * the BST), and false if unsuccessful (when the key was already there).
 */
 public boolean add(int newKey)
 {
 if (root == null) // tree is empty
 {
 Node newNode = new Node();
 newNode.key = newKey;
 root = newNode;
 return true; // successful add
 }
 else
 return add(root, newKey);
 }

 private boolean add(Node curr, int newKey)
 {
 if (curr.key == newKey) // newKey already exists, can’t add it twice
 return false;

 else if (newKey < curr.key) // key should be inserted in the left branch
 {
 if (curr.left == null) // is the left branch empty?
 {
 Node newNode = new Node();
 newNode.key = newKey;
 curr.left = newNode;
 return true; // successful add
 }
 else
 return add(curr.left, newKey);
 }
 else // key should be inserted in the right branch
 {
 if (curr.right == null) // is the right branch empty?
 {
 Node newNode = new Node();
 newNode.key = newKey;
 curr.right = newNode;
 return true; // successful add
 }
 else
 return add(curr.right, newKey);
 }
 }

 /**
 * Return true if this BST contains searchKey, false otherwise.
 */
 public boolean contains(int searchKey)
 {
 return contains(root, searchKey);
 }

 private boolean contains(Node curr, int searchKey)
 {
 if (curr == null)
 return false; // reached a leaf node, not found −> key not in tree

 else if (searchKey == curr.key)
 return true; // key found

 else if (searchKey < curr.key) // searchKey too small −> go left
 return contains(curr.left, searchKey);

 else // searchKey too big −> go right
 return contains(curr.right, searchKey);
 }

 /**
 * Remove a key from the BST. Returns true for a successful removal (when the key was in the tree
 * and has been removed), or false if the key wasn’t in the BST in the first place.
 */
 public boolean remove(int removeKey)
 {
 Node curr = root; // Will point to the node to be deleted.
 Node parent = null; // Will point to the parent of the node to be deleted.
 while (curr != null && curr.key != removeKey)
 {
 // Descend through the tree, looking for the node that contains removekey.
 // Stop when we find it, or when we encounter a null pointer.
 parent = curr;
 if (removeKey < curr.key)
 curr = curr.left;
 else
 curr = curr.right;
 }
 // At this point, curr is null, or we’ve successfully found removeKey in the tree.
 if (curr == null)
 return false; // removeKey wasn’t found in the tree.

 // We’ve found removeKey at the "curr" node, so remaining code will
 // delete curr from the tree.

 // Handle 2−child situation first.
 if (curr.left != null && curr.right != null)
 {
 // Find inorder successor of curr.
 Node successor = curr.right;
 Node successorParent = curr;
 while (successor.left != null)
 {
 successorParent = successor;
 successor = successor.left;
 }
 // Copy the inorder successor’s key into curr.
 curr.key = successor.key;
 // Continue with the code below that will delete the successor node, which
 // is guaranteed to have 0 children or 1 child.
 curr = successor;
 parent = successorParent;
 }

 // Handle 0−child or 1−child situation.
 Node subtree; // Will point to the subtree of curr that exists, if there is one,
 // or null if it has 0 children.

 if (curr.left == null && curr.right == null) // 0 children
 subtree = null;
 else if (curr.left != null)
 subtree = curr.left;
 else
 subtree = curr.right;

 // Attach subtree to the correct child pointer of the parent node, if it exists.
 // If there is no parent, then we are deleting the root node, and the subtree becomes the new root.
 if (parent == null)
 root = subtree;
 else if (parent.left == curr) // Deleting parent’s left child.
 parent.left = subtree;
 else // Deleting parent’s left child.
 parent.right = subtree;

 return true; // successful deletion.
 }

