
• Warmup: In IntelliJ, fill in the fact function
that takes a single int argument (num) and
returns the product of all the integers
between 1 and num.
– Use a for loop.

– Test in main when you're done.

• (This is actually a useful function in science
and mathematics, called the factorial
function.)

• Compare with your neighbor to see if you did
it the same way.

Recursion

• Warmup: In IntelliJ, fill in the fact function
that takes a single int argument (num) and
returns the product of all the integers
between 1 and num.
– Use a for loop.

– Test in main when you're done.

• (This is actually a useful function in science
and mathematics, called the factorial
function.)

• Compare with your neighbor to see if you did
it the same way.

public static long fact(int num) {

 long answer = 1;

 for (int i = 1; i <= n; i++) {

 answer *= x;

 }

 return answer;

}

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = 1 * 2 * 3 * 4 * 5

• Notice that each product involves computing
the entire product on the row above.

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's reformulate the definition of a factorial
to take advantage of this.

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = 1 * 2 * 3 * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = 1 * 2 * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = fact(2) * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = 1 * 2

• fact(3) = fact(2) * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = fact(1) * 2

• fact(3) = fact(2) * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = fact(1) * 2

• fact(3) = fact(2) * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Let's look at this problem a different way:

• fact(1) = 1

• fact(2) = fact(1) * 2

• fact(3) = fact(2) * 3

• fact(4) = fact(3) * 4

• fact(5) = fact(4) * 5

• Notice how for n >= 2, each factorial is defined
in terms of a smaller factorial.

• So if n >= 2, what is fact(n)?

– fact(n) = fact(n-1) * n

Recursion

• A recursive function is a function that calls
itself.

• Recursive functions are used to solve
problems where the solution to the problem
involves solving one or more smaller versions
of the same problem.

• A recursive function has two parts:

• Base case: How to solve the smallest
version(s) of the problem that we care about.

• Recursive case: How to reduce a bigger
version of the problem to one or more smaller
versions.

– In order to work, the recursive case (when applied
over and over) must eventually reduce every size
of the problem down to the base case.

• What are these for factorial?

• Let’s write this in Java.

Thinking Recursively
if (problem is sufficiently simple) {

Directly solve the problem.
Return the solution.

}
else {
 Split the problem up into one or more smaller
 problems with a similar structure as the
 original.
 Solve each of those smaller problems.
 Combine the results to get the overall solution.
 Return the overall solution.
}

How does this work in Java?

• Recursion works (in all modern programming
languages) because:

– All variables are local.

– We get new memory for local variables every time
a function is called.

• Let's look at a memory diagram when we call
factRec(3).

Why is this useful?

• Any loop (for/while) can be replaced with a
recursive function that does the same thing.
– Some languages don't include loops!

• Because we started with Python and Java, we
naturally see things in terms of loops.

• Some problems have a "naturally" recursive
solution that is hard to solve with a loop.

• Other problems have solutions that work
equally well recursively or with loops
(iteratively).

Demo

How to "get" recursion

• Forget all loops.

• To find the base case:

– "What is the smallest version of this problem I
would ever care about solving?"

• To find the recursive case:

– "If I have an instance of the problem, how can I
phrase how to solve the problem in terms of
solving one or more smaller instances?"

An "instance" of a problem
is a single example or

occurrence of that
problem.

Trust the recursion

• Base case is usually easy ("When do I stop?")

• In recursive case:

– Break the problem into multiple parts (not
necessarily the same size):

• A small part I can solve "now."

• The answer(s) from smaller instance(s) of the problem.

– Assume the recursive call does the right thing.

– Figure out how to combine the multiple parts.

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Recursion
	Slide 20
	Slide 21: Thinking Recursively
	Slide 22: How does this work in Java?
	Slide 23: Why is this useful?
	Slide 24: Demo
	Slide 25: How to "get" recursion
	Slide 26: Trust the recursion

