
720 Chapter 18 Recursion

18.1 Introduction
Recursion is a technique that leads to elegant solutions to problems that are difficult
to program using simple loops.

Suppose you want to find all the files under a directory that contains a particular word. How
do you solve this problem? There are several ways to do so. An intuitive and effective solution
is to use recursion by searching the files in the subdirectories recursively.

H-trees, depicted in Figure 18.1, are used in a very large-scale integration (VLSI) design as a
clock distribution network for routing timing signals to all parts of a chip with equal propagation
delays. How do you write a program to display H-trees? A good approach is to use recursion.

Point
Key

search word problem
H-tree problem

To use recursion is to program using recursive methods—that is, to use methods that invoke
themselves. Recursion is a useful programming technique. In some cases, it enables you to
develop a natural, straightforward, simple solution to an otherwise difficult problem. This
chapter introduces the concepts and techniques of recursive programming and illustrates with
examples of how to “think recursively.”

18.2 Case Study: Computing Factorials
A recursive method is one that invokes itself directly or indirectly.

Many mathematical functions are defined using recursion. Let’s begin with a simple example.
The factorial of a number n can be recursively defined as follows:

0! = 1;
n! = n × (n − 1)!; n > 0

How do you find n! for a given n? To find 1! is easy because you know that 0! is 1 and 1!
is 1 × 0!. Assuming that you know (n − 1)!, you can obtain n! immediately by using
n × (n − 1)!. Thus, the problem of computing n! is reduced to computing (n − 1)!. When
computing (n − 1)!, you can apply the same idea recursively until n is reduced to 0.

Let factorial(n) be the method for computing n!. If you call the method with n = 0,
it immediately returns the result. The method knows how to solve the simplest case, which is
referred to as the base case or the stopping condition. If you call the method with n > 0, it
reduces the problem into a subproblem for computing the factorial of n − 1. The subproblem
is essentially the same as the original problem, but it is simpler or smaller. Because the sub-
problem has the same property as the original problem, you can call the method with a different
argument, which is referred to as a recursive call.

The recursive algorithm for computing factorial(n) can be simply described as follows:

if (n == 0)
 return 1;

recursive method

Point
Key

base case or stopping
condition

recursive call

FIGURE 18.1 An H-tree can be displayed using recursion. Source: Copyright © 1995–2016 Oracle and/or its affiliates.
All rights reserved. Used with permission.

(a) (b) (c) (d)

M18_LIAN9966_12_SE_C18.indd 720 16/09/19 7:37 PM

18.2 Case Study: Computing Factorials 721

else
 return n * factorial(n − 1);

A recursive call can result in many more recursive calls because the method keeps on dividing
a subproblem into new subproblems. For a recursive method to terminate, the problem must
eventually be reduced to a stopping case, at which point the method returns a result to its caller.
The caller then performs a computation and returns the result to its own caller. This process
continues until the result is passed back to the original caller. The original problem can now
be solved by multiplying n by the result of factorial(n − 1).

Listing 18.1 gives a complete program that prompts the user to enter a nonnegative integer
and displays the factorial for the number.

LISTING 18.1 ComputeFactorial.java
 1 import java.util.Scanner;
 2
 3 public class ComputeFactorial {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter a nonnegative integer: ");
 9 int n = input.nextInt();
10
11 // Display factorial
12 System.out.println("Factorial of " + n + " is " + factorial(n));
13 }
14
15 /** Return the factorial for the specified number */
16 public static long factorial(int n) {
17 if (n == 0) // Base case
18 return 1;
19 else
20 return n * factorial(n − 1); // Recursive call
21 }
22 }

recursion

base case

The factorial method (lines 16–21) is essentially a direct translation of the recursive
mathematical definition for the factorial into Java code. The call to factorial is recursive
because it calls itself. The parameter passed to factorial is decremented until it reaches the
base case of 0.

You see how to write a recursive method. How does recursion work behind the scenes?
Figure 18.2 illustrates the execution of the recursive calls, starting with n = 4. The use of
stack space for recursive calls is shown in Figure 18.3.

how does it work?

Enter a nonnegative integer: 4
Factorial of 4 is 24

Enter a nonnegative integer: 10
Factorial of 10 is 3628800

M18_LIAN9966_12_SE_C18.indd 721 16/09/19 7:37 PM

722 Chapter 18 Recursion

FIGURE 18.3 When factorial(4) is being executed, the factorial method is called recursively, causing the stack
space to dynamically change.

Space required
for factorial(4)

n: 4

1 Space required
for factorial(4)

n: 4

2 Space required
for factorial(3)

n: 3

Space required
for factorial(4)

n: 4

3

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(4)

n: 4

4

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(4)

n: 4

5

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(0)

n: 0

Space required
for factorial(4)

n: 4

6

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(1)

n: 1

Space required
for factorial(4)

n: 4

7

Space required
for factorial(3)

n: 3

Space required
for factorial(2)

n: 2

Space required
for factorial(4)

n: 4

8 Space required
for factorial(3)

n: 3

Space required
for factorial(4)

n: 4

9

FIGURE 18.2 Invoking factorial(4) spawns recursive calls to factorial.

return 1

return 2 * factorial(1)

return 1 * factorial(0)

Step 9: return 24
Step 0: executes factorial(4)

Step 1: executes factorial(3)

Step 2: executes factorial(2)

Step 3: executes factorial(1)

Step 5: return 1

Step 6: return 1

Step 7: return 2

Step 8: return 6

Step 4: executes factorial(0)

factorial(4)

return 3 * factorial(2)

return 4 * factorial(3)

M18_LIAN9966_12_SE_C18.indd 722 16/09/19 7:37 PM

18.3 Case Study: Computing Fibonacci Numbers 723

Pedagogical Note
It is simpler and more efficient to implement the factorial method using a loop.
However, we use the recursive factorial method here to demonstrate the concept
of recursion. Later in this chapter, we will present some problems that are inherently
recursive and are difficult to solve without using recursion.

Note
If recursion does not reduce the problem in a manner that allows it to eventually converge
into the base case or a base case is not specified, infinite recursion can occur. For exam-
ple, suppose you mistakenly write the factorial method as follows:

 public static long factorial(int n) {
 return n * factorial(n − 1);
 }

The method runs infinitely and causes a StackOverflowError.

The example discussed in this section shows a recursive method that invokes itself. This is
known as direct recursion. It is also possible to create indirect recursion. This occurs when
method A invokes method B, which in turn directly or indirectly invokes method A.

 18.2.1 What is a recursive method? What is an infinite recursion?

 18.2.2 How many times is the factorial method in Listing 18.1 invoked for factorial(6)?

 18.2.3 Show the output of the following programs and identify base cases and recursive calls.

infinite recursion

direct recursion
indirect recursion

Point
Check

 18.2.4 Write a recursive mathematical definition for computing 2n for a positive integer n.

 18.2.5 Write a recursive mathematical definition for computing xn for a positive integer n
and a real number x.

 18.2.6 Write a recursive mathematical definition for computing 1 + 2 + 3 + g + n
for a positive integer n.

18.3 Case Study: Computing Fibonacci Numbers
In some cases, recursion enables you to create an intuitive, straightforward, simple
solution to a problem.

The factorial method in the preceding section could easily be rewritten without using
recursion. In this section, we show an example for creating an intuitive solution to a problem
using recursion. Consider the well-known Fibonacci-series problem:

The series: 0 1 1 2 3 5 8 13 21 34 55 89 . . .
indexes: 0 1 2 3 4 5 6 7 8 9 10 11

Point
Key

public class Test {
 public static void main(String[] args) {
 System.out.println(
 "Sum is " + xMethod(5));
 }

 public static int xMethod(int n) {
 if (n == 1)
 return 1;
 else
 return n + xMethod(n − 1);
 }
}

public class Test {
 public static void main(String[] args) {
 xMethod(1234567);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 System.out.print(n % 10);
 xMethod(n / 10);
 }
 }
}

M18_LIAN9966_12_SE_C18.indd 723 16/09/19 7:37 PM

724 Chapter 18 Recursion

The Fibonacci series begins with 0 and 1, and each subsequent number is the sum of the pre-
ceding two. The series can be recursively defined as

fib(0) = 0;
fib(1) = 1;
fib(index) = fib(index − 2) + fib(index − 1); index >= 2

The Fibonacci series was named for Leonardo Fibonacci, a medieval mathematician, who
originated it to model the growth of the rabbit population. It can be applied in numeric opti-
mization and in various other areas.

How do you find fib(index) for a given index? It is easy to find fib(2) because you
know fib(0) and fib(1). Assuming you know fib(index − 2) and fib(index − 1),
you can obtain fib(index) immediately. Thus, the problem of computing fib(index) is
reduced to computing fib(index − 2) and fib(index − 1). When doing so, you apply
the idea recursively until index is reduced to 0 or 1.

The base case is index = 0 or index = 1. If you call the method with index = 0 or
index = 1, it immediately returns the result. If you call the method with index >= 2, it divides
the problem into two subproblems for computing fib(index − 1) and fib(index − 2)
using recursive calls. The recursive algorithm for computing fib(index) can be simply
described as follows:

if (index == 0)
 return 0;
else if (index == 1)
 return 1;
else
 return fib(index − 1) + fib(index − 2);

Listing 18.2 gives a complete program that prompts the user to enter an index and computes
the Fibonacci number for that index.

LISTING 18.2 ComputeFibonacci.java
 1 import java.util.Scanner;
 2
 3 public class ComputeFibonacci {
 4 /** Main method */
 5 public static void main(String[] args) {
 6 // Create a Scanner
 7 Scanner input = new Scanner(System.in);
 8 System.out.print("Enter an index for a Fibonacci number: ");
 9 int index = input.nextInt();
10
11 // Find and display the Fibonacci number
12 System.out.println("The Fibonacci number at index "
13 + index + " is " + fib(index));
14 }
15
16 /** The method for finding the Fibonacci number */
17 public static long fib(long index) {
18 if (index == 0) // Base case
19 return 0;
20 else if (index == 1) // Base case
21 return 1;
22 else // Reduction and recursive calls
23 return fib(index − 1) + fib(index − 2);
24 }
25 }

base case

base case
recursion

M18_LIAN9966_12_SE_C18.indd 724 16/09/19 7:37 PM

18.3 Case Study: Computing Fibonacci Numbers 725

The program does not show the considerable amount of work done behind the scenes by the
computer. Figure 18.4, however, shows the successive recursive calls for evaluating fib(4).
The original method, fib(4), makes two recursive calls, fib(3) and fib(2), and then
returns fib(3) + fib(2). However, in what order are these methods called? In Java, oper-
ands are evaluated from left to right, so fib(2) is called after fib(3) is completely evaluated.
The labels in Figure 18.4 show the order in which the methods are called.

As shown in Figure 18.4, there are many duplicated recursive calls. For instance, fib(2)
is called twice, fib(1) three times, and fib(0) twice. In general, computing fib(index)
requires roughly twice as many recursive calls as does computing fib(index − 1). As you
try larger index values, the number of calls substantially increases, as given in Table 18.1.

Enter an index for a Fibonacci number: 1
The Fibonacci number at index 1 is 1

Enter an index for a Fibonacci number: 6
The Fibonacci number at index 6 is 8

Enter an index for a Fibonacci number: 7
The Fibonacci number at index 7 is 13

FIGURE 18.4 Invoking fib(4) spawns recursive calls to fib.

return
10: return fib(3)

0: call 17: return fib(4)

return return

1: call

11: call

16: return fib(2)

return 1 return 0

12: call
13: return fib(1) 14: return fib(0)

15: return fib(0)
return return 1

2: call
7: return fib(2)

8: call

9: return fib(1)

return 1 return 0

3: call

4: return fib(1)
5: call

6: return fib(0)

fib(1)

fib(1)

fib(1)

fib(0)

fib(1)

fib(2)

fib(3)

fib(3)

fib(1) fib(0)

fib(1)

fib(4)
fib(4)

fib(0)

fib(2)

fib(2)
fib(2)

1

11

1

index 2 3 4 10 20 30 40 50

of calls 3 5 9 177 21,891 2,692,537 331,160,281 2,075,316,483

TABLE 18.1 Number of Recursive Calls in fib(index)

Pedagogical Note
The recursive implementation of the fib method is very simple and straightforward, but
it isn’t efficient, because it requires more time and memory to run recursive methods. See
Programming Exercise 18.2 for an efficient solution using loops. Though it is not prac-
tical, the recursive fib method is a good example of how to write recursive methods.

M18_LIAN9966_12_SE_C18.indd 725 16/09/19 7:37 PM

726 Chapter 18 Recursion

 18.3.1 Show the output of the following two programs:
Point

Check

 18.3.3 How many times is the fib method in Listing 18.2 invoked for fib(6)?

18.4 Problem Solving Using Recursion
If you think recursively, you can solve many problems using recursion.

The preceding sections presented two classic recursion examples. All recursive methods have
the following characteristics:

 ■ The method is implemented using an if−else or a switch statement that leads to
different cases.

 ■ One or more base cases (the simplest case) are used to stop recursion.

 ■ Every recursive call reduces the original problem, bringing it increasingly closer to a
base case until it becomes that case.

In general, to solve a problem using recursion, you break it into subproblems. Each subprob-
lem is the same as the original problem, but smaller in size. You can apply the same approach
to each subproblem to solve it recursively.

Recursion is everywhere. It is fun to think recursively. Consider drinking coffee. You may
describe the procedure recursively as follows:

public static void drinkCoffee(Cup cup) {
 if (!cup.isEmpty()) {
 cup.takeOneSip(); // Take one sip
 drinkCoffee(cup);
 }
}

Point
Key

recursion characteristics
if-else

base cases

reduction

think recursively

 18.3.2 What is wrong in the following methods?

public class Test {
 public static void main(String[] args) {
 xMethod(5);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 System.out.print(n + " ");
 xMethod(n − 1);
 }
 }
}

public class Test {
 public static void main(String[] args) {
 xMethod(5);
 }

 public static void xMethod(int n) {
 if (n > 0) {
 xMethod(n − 1);
 System.out.print(n + " ");
 }
 }
}

public class Test {
 public static void main(String[] args) {
 xMethod(1234567);
 }

 public static void xMethod(double n) {
 if (n != 0) {
 System.out.print(n);
 xMethod(n / 10);
 }
 }
}

public class Test {
 public static void main(String[] args) {
 Test test = new Test();
 System.out.println(test.toString());
 }

 public Test() {
 Test test = new Test();
 }
}

M18_LIAN9966_12_SE_C18.indd 726 16/09/19 7:37 PM

