
COMP 142 — Computer Science II: Objected-Oriented Programming — Fall 2024

Instructor: Phillip Kirlin
Times: (Mon/Fri 10–10:50 and Wed 9–10:50) or (Mon/Fri 11–11:50 and Wed 11–12:50)
Classroom: Briggs 001
Course website: See Canvas
Email: kirlinp@rhodes.edu (please include “CS 142” somewhere in the subject)
Office: Briggs 209
Office hours: See website for scheduled office hours. I am also available by appointment.

Official Course Description: An introduction to the fundamental concepts and practices of
object-oriented programming. The object-oriented programming paradigm is introduced,
with a focus on the definition and use of classes as a basis for fundamental object-oriented
program design. Other topics include an overview of programming language principles, sim-
ple analysis of algorithms, basic searching and sorting techniques, and an introduction to
software engineering issues.

Unofficial Course Description: COMP 142 is the second course in the sequence for computer
science majors or minors and ideally should be taken immediately after COMP 141. COMP
142 offers a new perspective on software design through an introduction of the object-oriented
paradigm. Special emphasis is placed on the process of building hierarchies of abstractions
to hide implementation details through a careful and systematic analysis of problems of
moderate complexity. Various design approaches will be explored with the goal of identifying
the situations for which each approach is applicable.

This course will use the Java programming language as the vehicle for exploration of funda-
mental computer science concepts. However, this is not a course about Java; it is about the
structure and interpretation of computer programs.

The particular Java environment that will be used in this course is available in the computer
labs on Rhodes College campus, and can also be installed on personal computers. You are
free to develop the code for the assignments on your own computer using an environment of
your choice. However, keep in mind that the source code that you submit for assignments
must compile and run successfully using the environment from class.

Course Objectives: At the end of this course, you should be able to

• analyze problems of moderate complexity and solve such problems by writing code using
the Java programming language,

• apply principles of good program design, especially the uses of data abstraction and
modular program composition,

• understand the fundamental design, analysis, and implementation of basic data struc-
tures and algorithms,

• assess how the choice of data structures and algorithm design methods impacts the
performance of programs,

• apply your programming skills to diverse applications in science and engineering

Text: There is no required textbook for this class. Readings will be assigned from materials
distributed in class or online.

1



Prerequisites: The course assumes successful completion of COMP 141 or significant program-
ming experience. Please come see me if you have not had COMP 141.

Coursework:

Tentative weight Tentative date

Programming projects 35%
Labs and homework 15%
Midterm 1 15% Wednesday, October 9, in class
Midterm 2 15% Wednesday, November 20, in class
Comprehensive final exam 20% TBA

Grades of A–, B–, C–, and D– are guaranteed with final course grades of 90%, 80%, 70%, and
60%, respectively. If your final course grade falls near a letter grade boundary, I may take
into account participation, attendance, and/or improvement during the semester.

Assignments are due at 11:59pm unless otherwise specified. In general, late will work will not
be accepted without an extension obtained prior to the due date.

Course Topics: (not necessarily in this order)

• Java basics: syntax, data types, arrays, strings, functions, file reading
• Objects and classes
• Object-oriented design
• Inheritance and polymorphism
• Recursion
• Asymptotic analysis
• Linked lists
• Optional topics as time permits: generics, other data structures (stacks, queues)

Late Work and Makeup Assignments: In general, late work will not be accepted without ar-
ranging an extension in advance with the instructor, and will often come with a late penalty.
Please make every effort to submit assignments on time.

If you have a valid reason for a makeup exam, inform your instructor as soon as you know.
A valid reason is a medical emergency, a death in the family, religious observation, a college-
sponsored off-campus activity, and, quite frankly, very little else. Generally, assignment
extensions will only be granted for unplanned circumstances (e.g., the first two reasons above).

Office Hours: In addition to regular office hours, am also available immediately after class for
short questions. You never need an appointment to see me during regular office hours; you
can just come by. Outside of regular office hours, feel free to stop by my office, and if I have
time, I’ll try to help you. If I don’t have time at that moment, we’ll set up an appointment
for a different time. Don’t be shy about coming by my office or sending me email if you can’t
make my regular office hours. I always set aside time each week for “unscheduled” office
hours.

Attendance: Attendance is expected for each class. If your attendance deteriorates, you will be
referred to the dean and asked to drop the course. Attendance, participation, and apparent
overall improvement trend may be considered in assigning a final grade. Attendance will be

2



checked each class lecture period. After five unexcused absences, each additional absence will
reduce the final grade for the course by one letter grade.

Workload: It is important to stay current with the material. You should be prepared to devote
at least 2–3 hours outside of class for each in-class lecture. In particular, you should expect
to spend a significant amount of time for this course working on a computer trying example
programs and developing programming assignments. Do not wait to the last minute to start
your programming assignments.

You are encouraged to form study groups with colleagues from the class. The goal of these
groups is to clarify and solidify your understanding of the concepts presented in class, and
to provide for a richer and more engaging learning experience. However, you are expected to
turn in your own code that represents the results of your own effort.

Class Conduct:

• I encourage everyone to participate in class. Raise your hand if you have a question or
comment. Please don’t be shy about this; if you are confused about something, it is likely
that someone else is confused as well. Teaching and learning is a partnership between
the instructor and the students, and asking questions not only helps you understand the
material, it also helps me know what I’m doing right or wrong.

• If you cannot make it to class for whatever reason, make that you know what happened
during the lecture that you missed. It is your responsibility, and nobody else’s, to do so.
The best way to do this is to ask a classmate.

Collaboration: Students should talk to each other about the subject matter of this class and
help each other. It is fine to discuss the readings, lectures, and problems and ask questions
about them. I encourage such questions in class as well as elsewhere. However, there is a line
past which you must not go, e.g., copying a solution from a fellow student, book, website,
artificial intelligence tool such as ChatGPT, etc., will cause you to fail the course, or worse.
If a significant part of one of your solutions is due to someone else, or something you’ve read,
then you must acknowledge your source. Failure to do so is a serious academic violation. Of
course, even after you acknowledge your source you must still understand your solution and
write it in your own words. Copying a solution from someone or someplace else will result
in failure even if you acknowledge your source, unless you put it in quotation marks and say
something like, “Here is Amy’s solution, but I don’t understand it enough to absorb it and
write it in my own words.” However, this won’t get you much — if any — credit.

Programming Assignments:

• All programs assigned in this course must be written in Java, unless otherwise specified.
When turning in assignments, submit only the Java source code files (.java); do not
submit any files generated by the IDE (e.g., .class).

• Back up your code somewhere as you’re working on your assignments. Computer crashes
or internet downtime are not valid excuses for missing a deadline.

• Programming grades will be graded on correctness of the program output, efficiency and
appropriateness of the algorithms used in the code, and style and documentation of the
source code.

3



• Grades are assigned to programs as follows by this general guideline:

– A (100 pts): The program is carefully designed, efficiently implemented, well docu-
mented, and produces clearly formatted, correct output.

– A- (93 pts): The program is an ‘A’ program with one or two of the minor problems
described for grade ‘B.’

– B (85 pts): The program typically could easily have been an ‘A’ program, but it may
have minor/careless problems such as poor, inadequate, or incomplete documenta-
tion; several literal values where symbolic constants would have been appropriate;
wrong file names (these will be specified per program assignment); sloppy code for-
mat; minor efficiency problems; etc. (This is not an exhaustive list.) You would be
wise to consider ‘B’ the default grade for a working program — this might encour-
age you to review and polish your first working draft of an assignment to produce a
more professional quality final version of your program.

– C (75 pts): The program has more serious problems: incorrect output or crashes for
important special cases (the “empty” case, the “maxed-out” case, etc.), failure to
carefully follow design and implementation requirements spelled out in the assign-
ment, very poor or inefficient design or implementation, near complete absence of
documentation, etc.

– D (60 pts): The program runs, but it produces clearly incorrect output or crashes
for typical cases. Or, it may deviate greatly from the design or implementation
requirements stated in the assignment description.

– F (35 pts): Typically, an ‘F’ program produces no correct output, or it may not even
run. It may “look like a program” when printed as a hard copy, but there remains
much work to be done for it to be a correct, working program.

Rules for Completing Assignments Independently

• Unless otherwise specified, programming assignments handed in for this course are to be
done independently.

• Talking to people (faculty, other students in the course, others with programming expe-
rience) is one of the best ways to learn. I am always willing to answer your questions or
provide hints if you are stuck. But when you ask other people for help, sometimes it is
difficult to know what constitutes legitimate assistance and what does not. In general,
follow these rules:

– Rule 1: Do not look at anyone else’s code for the same project, or a
different project that solves a similar or identical problem.
Details: “Anyone else” here refers to other members of the class, people who have
taken the class before, people at other schools enrolled in similar classes, or any
code you find online or in print. “Similar or identical problem” here should allow
you to look at code that uses techniques applied in different situations that you
can then adapt to your project. However, if you find yourself copying-and-pasting
code or directly transforming code line by line to fit into your program, then that
is considered plagiarism.
Exception: You may help someone else debug their program, or seek assistance in
debugging yours. However, this requires the person writing the code being debugged

4



to have made a good-faith attempt to write the program in the first place, and the
goal of the debugging must be to fix one specific problem with the code, not re-write
something from scratch.

– Rule 2: Do not write code or pseudocode with anyone else.
Details: You must make a good faith effort to develop and implement your ideas
independently before seeking assistance. Feel free to discuss the project in general
with anyone else before you begin and as you’re developing your program, but
when you get to the level of writing code or pseudocode, you should be working
independently.

The underlying idea is that you are entitled to seek assistance in ways which will gen-
uinely help you to learn the material (as opposed to just getting the assignment done).
Programming assignments are graded as a benefit to you; they are your chance to show
what you have learned under circumstances less stressful than an exam. In return, I ask
only that your work fairly reflect your understanding and your effort in the course.

Coding Style: Designing algorithms and writing the corresponding code is not a dry, mechanical
process, but an art form. Well-written code has an aesthetic appeal while poor form can
make other programmers (and instructors) cringe. Programming assignments will be graded
based on correctness and style. To receive full credit for graded programs, you must adhere
to good programming practices. Therefore, your assignment must contain the following:

• A comment at the top of the program that includes the author of the program, the date
or dates, and a brief description of what the program does

• Concise comments that summarize major sections of your code, along with a comment
for each function in your code that describes what the function does.

• Meaningful variable and function names
• Well-organized code
• White space or comments to improve legibility
• Avoidance of large blocks of copy-and-pasted code

Additional policies: On the class webpage, there are additional class and college policies covering
accommodations, academic integrity, diversity, sexual misconduct disclosure, and recording
lectures. Those policies are considered part of this syllabus.

5


