
Binary	Search		
	
The	binary	search	algorithm	is	a	very	well-known	algorithm	in	computer	science.		Given	a	sorted	array	
(or	ArrayList)	of	items,	the	algorithm	is	used	to	test	whether	a	candidate	item	(the	key)	is	in	the	array	or	
not.		Often	the	algorithm	is	written	in	such	a	way	that	it	returns	the	index	within	the	array	at	which	the	
key	is	located,	rather	than	only	a	boolean	value	indicating	whether	key	was	found	or	not.	
	
Recall	that	the	linear	search	algorithm	solves	this	same	problem	but	does	not	assume	the	array	is	sorted.		
By	beginning	with	a	sorted	array,	binary	search	usually	runs	much	faster	than	linear	search.	
	
Binary	search	begins	by	identifying	the	item	in	the	middle	of	the	array	and	comparing	it	against	the	key.		
If	the	middle	item	matches	the	key,	then	the	index	of	the	middle	item	is	returned.		If	the	middle	item	is	
larger	than	the	key,	the	algorithm	repeats	itself	on	the	sub-array	to	the	left	of	the	middle	item;	if	the	
middle	item	is	smaller	than	the	key,	the	algorithm	repeats	on	the	sub-array	to	the	right	of	the	middle	
item.		If	the	remaining	sub-array	to	be	searched	ever	becomes	empty,	we	know	the	key	is	not	in	the	array.	
	
The	“repetition”	part	of	the	algorithm	can	be	implemented	using	iteration	(a	loop)	or	recursion.		In	either	
case,	the	algorithm	maintains	two	variables	to	keep	track	of	the	current	upper	and	lower	indices	for	the	
portion	of	the	array	that	could	potentially	contain	the	key.			
	
We	present	the	algorithm	as	a	search	over	a	sorted	array	of	integers,	though	any	data	type	can	be	used	as	
long	as	the	array	is	sorted	in	some	fashion.			
	

1. We	are	given		
a. an	array	array	of	size	n,	indexed	from	0	to	n-1	
b. an	integer	key	to	look	for	in	the	array	
c. an	integer	low	that	is	the	lowest	index	in	the	array	that	could	contain	the	key	
d. an	integer	high	that	is	the	highest	index	in	the	array	that	could	contain	the	key	

2. If	low	>	high,	then	the	item	is	not	found	(return	-1)	
3. Compute	the	middle	index	in	the	array.	
4. If	the	item	at	the	middle	index	is	the	key,	return	that	index.	
5. If	the	item	at	the	middle	index	is	greater	than	the	key,	repeat	from	step	2,	on	the	left	sub-array.	
6. If	the	item	at	the	middle	index	is	less	than	the	key,	repeat	from	step	2	on	the	right	sub-array.	

	
For	steps	5	and	6,	if	using	recursion,	the	“repeat”	part	is	done	by	calling	your	binary	search	function	with	
new	argument	values	for	low	or	high.	
	

	
	

	
	
	
	
	
	
	
	
	
	
	
	

// Iterative binary search --- remember the array must be sorted!

public static int binarySearchIter(int[] array, int key) {
 int low = 0; // far left index
 int high = array.length - 1; // far right index

 while (high >= low) {
 int mid = (low + high) / 2; // find midpoint

 if (array[mid] > key) { // if middle element > key
 high = mid - 1; // next time, look in left half of array
 }

 else if (array[mid] < key) { // if middle element < key
 low = mid + 1; // next time, look in right half of array
 }

 else { // if middle element == key
 return mid; // return this middle element index
 }
 }
 return -1; // key not found
}

// Recursive binary search.
public static int binarySearchRec(int[] array, int key) {
 return binarySearchRec(array, key, 0, array.length - 1);
}

// Helper method for above.
private static int binarySearchRec(int[] array, int key, int low, int high) {
 if (low > high) { // base case #1 - if item is not found
 return -1;
 }

 int mid = (low + high) / 2;

 if (array[mid] == key) { // base case #2: if array[mid] == key
 return mid;
 }

 else if (array[mid] > key) {
 return binarySearchRec(array, key, low, mid - 1);
 }

 else {
 return binarySearchRec(array, key, mid + 1, high);
 }
}

