
• Warmup: In IntelliJ, fill in the fact function
that takes a single int argument (num) and
returns the product of all the integers
between 1 and num.
– Use a for loop.
– Test in main when you're done.

• (This is actually a useful function in science
and mathematics, called the factorial
function.)

• Compare with your neighbor to see if you did
it the same way.

Recursion

• Warmup: In IntelliJ, fill in the fact function
that takes a single int argument (num) and
returns the product of all the integers
between 1 and n.
– Use a for loop.
– Test in main when you're done.

• (This is actually a useful function in science
and mathematics, called the factorial
function.)

• Compare with your neighbor to see if you did
it the same way.

public static long fact(int num) {
long answer = 1;
for (int i = 1; i <= n; i++) {

answer *= x;
}
return answer;

}

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = 1 * 2 * 3 * 4 * 5
• Notice that each product involves computing

the entire product on the row above.

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = 1 * 2 * 3 * 4 * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = 1 * 2 * 3 * 4 * 5
• Let's reformulate the definition of a factorial

to take advantage of this.

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = 1 * 2 * 3 * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = 1 * 2 * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = fact(2) * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = 1 * 2
• fact(3) = fact(2) * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = fact(1) * 2
• fact(3) = fact(2) * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = fact(1) * 2
• fact(3) = fact(2) * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5

• Let's look at this problem a different way:
• fact(1) = 1
• fact(2) = fact(1) * 2
• fact(3) = fact(2) * 3
• fact(4) = fact(3) * 4
• fact(5) = fact(4) * 5
• Notice how for n >= 2, each factorial is defined

in terms of a smaller factorial.
• So if n >= 2, what is fact(n)?
– fact(n) = fact(n-1) * n

Recursion

• A recursive function is a function that calls
itself.

• Recursive functions are used to solve
problems where the solution to the problem
involves solving one or more smaller versions
of the same problem.

• A recursive function has two parts:
• Base case: How to solve the smallest

version(s) of the problem that we care about.
• Recursive case: How to reduce a bigger

version of the problem to one or more smaller
versions.
– In order to work, the recursive case (when applied

over and over) must eventually reduce every size
of the problem down to the base case.

• What are these for factorial?
• Let’s write this in Java.

Thinking Recursively
if (problem is sufficiently simple) {

Directly solve the problem.
Return the solution.

}
else {

Split the problem up into one or more smaller
problems with a similar structure as the
original.

Solve each of those smaller problems.
Combine the results to get the overall solution.
Return the overall solution.

}

How does this work in Java?

• Recursion works (in all modern programming
languages) because:
– All variables are local.
–We get new memory for local variables every time

a function is called.
• Let's look at a memory diagram when we call

factRec(3).

Why is this useful?
• Any loop (for/while) can be replaced with a

recursive function that does the same thing.
– Some languages don't include loops!

• Because we started with Python and Java, we
naturally see things in terms of loops.

• Some problems have a "naturally" recursive
solution that is hard to solve with a loop.

• Other problems have solutions that work
equally well recursively or with loops
(iteratively).

Demo

How to "get" recursion

• Forget all loops.
• To find the base case:
– "What is the smallest version of this problem I

would ever care about solving?"

• To find the recursive case:
– "If I have an instance of the problem, how can I

phrase how to solve the problem in terms of
solving one or more smaller instances?"

An "instance" of a problem
is a single example or

occurrence of that
problem.

Trust the recursion
• Base case is usually easy ("When do I stop?")
• In recursive case:
– Break the problem into multiple parts (not

necessarily the same size):
• A small part I can solve "now."
• The answer(s) from smaller instance(s) of the problem.

– Assume the recursive call does the right thing.
– Figure out how to combine the two parts.

