
Recursive Functions with Arrays



Iterative version

• Have an array/ArrayList called array.  Want to find 
the sum of all the elements:

int sum = 0;
for (int i = 0; i < array.size(); i++) 
sum += array[i];



Recursive version
• Base case: What is the smallest size of an array for which 

we would ever want to add up all the elements?
• Recursive case:

– Suppose you have an array with >1 element.  
– How can I describe finding the sum of all the elements as 

involving finding the sum of the elements of a smaller sized 
array?

– Hint: Suppose my array has 5 elements.  My best 
friend knows how to find the largest value in an array, 
but only for 4 elements.  How can I use him to solve 
my problem?



Recursive version

• sum(array)

• Base case: If array.size() == 1, return array[0]

• Recursive case: If array.size() > 1:

– Compute the sum of all the elements in the sub-array from 
index 1 to the end è sum(array[1:]) in Python syntax.

– Add array[0] to this sum from above.
– Return this value.



array = [7, 9, 8]

Call sum([7, 9, 8])

array = [7, 9, 8]
smallerSum = sum([9, 8])

Call sum([9, 8])

array = [9, 8]
smallerSum = sum([8])

Call sum([8])

array = [8]
Base case!

• sum(array)

• Base case: If array.size() == 1, 

return array[0]

• Recursive case: If array.size() > 1:

– Find the sum of elements in 
array[1:]  (whole array except A[0])
• call it smallerSum

– Return smallerSum + array[0]



array = [7, 9, 8]

Call sum([7, 9, 8])

array = [7, 9, 8]
smallerSum = sum([9, 8])

Call sum([9, 8])

array = [9, 8]
smallerSum = sum([8]) = 8 

Call sum([8])

array = [8]
Base case!
Return array[0] = 8

• sum(array)

• Base case: If array.size() == 1, 

return array[0]

• Recursive case: If array.size() > 1:

– Find the sum of elements in 
array[1:]  (whole array except A[0])
• call it smallerSum

– Return smallerSum + array[0]

Returns 
8



array = [7, 9, 8]

Call sum([7, 9, 8])

array = [7, 9, 8]
smallerSum = sum([9, 8])

Call sum([9, 8])

array = [9, 8]
smallerSum = sum([8]) = 8 
Return smallerSum+array[0]

Call sum([8])

array = [8]
Base case!
Return array[0] = 8

• sum(array)

• Base case: If array.size() == 1, 

return array[0]

• Recursive case: If array.size() > 1:

– Find the sum of elements in 
array[1:]  (whole array except A[0])
• call it smallerSum

– Return smallerSum + array[0]

Returns 
8



array = [7, 9, 8]

Call sum([7, 9, 8])

array = [7, 9, 8]
smallerSum = sum([9, 8])=17
Return smallerSum+array[0]

Call sum([9, 8])

array = [9, 8]
smallerSum = sum([8]) = 8 
Return smallerSum+array[0]

Call sum([8])

array = [8]
Base case!
Return array[0] = 8

• sum(array)

• Base case: If array.size() == 1, 

return array[0]

• Recursive case: If array.size() > 1:

– Find the sum of elements in 
array[1:]  (whole array except A[0])
• call it smallerSum

– Return smallerSum + array[0]

Returns 
8

Returns 8+9=17



array = [7, 9, 8]

Call sum([7, 9, 8])

array = [7, 9, 8]
smallerSum = sum([9, 8])=17
Return smallerSum+array[0]

Call sum([9, 8])

array = [9, 8]
smallerSum = sum([8]) = 8 
Return smallerSum+array[0]

Call sum([8])

array = [8]
Base case!
Return array[0] = 8

• sum(array)

• Base case: If array.size() == 1, 

return array[0]

• Recursive case: If array.size() > 1:

– Find the sum of elements in 
array[1:]  (whole array except A[0])
• call it smallerSum

– Return smallerSum + array[0]

Returns 
8

Returns 8+9=17

Returns 17+7=24



Java recursive version
• Java does let you take slices of arrays like Python, it involves 

using some techniques we haven't learned yet, so we're going 
to see a different way.

• Notice that our slices always involving chopping off the first 
element in the array; i.e, A[0]
– [7, 9, 8] -> [9, 8] -> [8]

• How can we simulate an array slice without actually doing the 
slicing?
– Hint: In the olden days, people used these things called "bookmarks" 

to hold their spot in a book while they were reading.  We can use the 
same idea to mark the section of the array that we are interested in 
recursing on.



Java recursive version

• Use an integer variable "bookmark" to save your spot in 

the array.  

• When we make a recursive call, instead of passing an 

updated array (like the Python version), we will pass an 

updated bookmark.

• Our function will now be sum(array, leftIdx)

– leftIdx ("left index") represents the index of the bookmark in the 
array: everything before the bookmark is already read, 
everything afterwards is unread.  So it is the leftmost index of 
the portion of the array we have still left to read.



Recursive Java version

• sum(A, leftIdx)

• Base case: ???

• Recursive case: 

– Find the sum of elements in ??? 
• call it smallerSum

– return ???

• Where does the bookmark start?



Recursive Java version

• sum(A, leftIdx)

• Base case: if leftIdx == array.size() - 1

• Recursive case:

– Find the sum of elements in everything after array[leftIdx]
• smallerSum = sum(array, leftIdx + 1)

– return smallerSum + array[0]

• Initial call should be sum(array, 0)



• How can we use this idea to find the largest element 
in an array/arraylist?  (the max element)?

• On paper, write out a recursive formulation for this.
– What is the base case? (What is the smallest size of an 

array we would want to take the max of?)
– What is the recursive case? For a bigger array, how do we 

find the max element by reducing the problem to a smaller 
version of the same problem?

– Hint: For an array of size >= 2, suppose a friend tells you 
they have already computed the largest element in the 
sub-array from index 1 to the end.  How can you use this 
information to help you find the overall largest element?

• Code this in Java!


