* Warmup: In IntelliJ, fill in the fact function
that takes a single int argument (num) and
returns the product of all the integers
between 1 and num.

— Use a for loop.
— Test in main when you're done.
e (This is actually a useful function in science

and mathematics, called the factorial
function.)

 Compare with your neighbor to see if you did
it the same way.

Recursion

* Warmup: In IntelliJ, fill in the fact function
that takes a single int argument (num) and

returns the product of all the integers
between 1 and n.

— Use a for loop.
— Test in main when you're done.
e (This is actually a useful function in science

and mathematics, called the factorial
function.)

 Compare with your neighbor to see if you did
it the same way.

public static long fact(int num) {
long answer = 1;
for (int i = 1; 1 <= n; i++) {
answer *= Xx;

}

return answer;

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1*2*3

fact(4)=1*2*3 *4
fact(5)=1*2*3*4*5

Notice that each product involves computing
the entire product on the row above.

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1%*2*3

fact(4)=1*2*3*4
fact(5)=1*2*3*4*5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1%*2*3

fact(4)=1*2*3*4
fact(5)=1*2*3*4*5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1*2*3

fact(4)=1*2*3*4
fact(5)=1*2*3*4*5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1*2*3

fact(4)=1*2*3*4
fact(5)=1*2*3*4*5

Let's reformulate the definition of a factorial
to take advantage of this.

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1*2*3

fact(4)=1*2*3*4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1%*2*3

fact(4)=1*2*3*4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1%*2*3

fact(4) = fact(3) * 4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3)=1%*2*3

fact(4) = fact(3) * 4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3) = fact(2) * 3

fact(4) = fact(3) * 4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2)=1*2

fact(3) = fact(2) * 3

fact(4) = fact(3) * 4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2) = fact(1) * 2

fact(3) = fact(2) * 3

fact(4) = fact(3) * 4

fact(5)= fact(4) *5

Let's look at this problem a different way:
fact(1)=1

fact(2) = fact(1) * 2

fact(3) = fact(2) * 3

fact(4) = fact(3) * 4

fact(5) = fact(4) * 5

Let's look at this problem a different way:
fact(1)=1

fact(2) = fact(1) * 2

fact(3) = fact(2) * 3

fact(4) = fact(3) * 4

fact(5) = fact(4) * 5

Notice how for n >= 2, each factorial is defined
in terms of a smaller factorial.

So if n >= 2, what is fact(n)?

— fact(n) = fact(n-1) * n

Recursion

* A recursive function is a function that calls
itself.

* Recursive functions are used to solve
problems where the solution to the problem
involves solving one or more smaller versions
of the same problem.

A recursive function has two parts:

Base case: How to solve the smallest
version(s) of the problem that we care about.

Recursive case: How to reduce a bigger

version of the problem to one or more smaller
versions.

— In order to work, the recursive case (when applied

over and over) must eventually reduce every size
of the problem down to the base case.

What are these for factorial?
Let’s write this in Java.

Thinking Recursively

if (problem is sufficiently simple) {
Directly solve the problem.
Return the solution.

J

else {
Split the problem up into one or more smaller

problems with a similar structure as the
original.
Solve each of those smaller problems.
Combine the results to get the overall solution.
Return the overall solution.

How does this work in Java?

e Recursion works (in all modern programming
languages) because:
— All variables are local.

— We get new memory for local variables every time
a function is called.

* Let's look at a memory diagram when we call
factRec(3).

Why is this useful?

Any loop (for/while) can be replaced with a
recursive function that does the same thing.

— Some languages don't include loops!

Because we started with Python and Java, we
naturally see things in terms of loops.

Some problems have a "naturally"” recursive
solution that is hard to solve with a loop.

Other problems have solutions that work
equally well recursively or with loops
(iteratively).

Demo

How to "get"

* Forget all loops.
* To find the base case:

recursion

— "What is the smallest version of this problem |
would ever care about solving?"

 To find the recursive case:

—"If | have an instance of t

ne problem, how can |

phrase how to solve the problem in terms of

solving one or more sma

ler instances?"

Trust the recursion

e Base case is usually easy ("When do | stop?")

* |n recursive case:

— Break the problem into multiple parts (not
necessarily the same size):

* A small part | can solve "now."
 The answer(s) from smaller instance(s) of the problem.

— Assume the recursive call does the right thing.
— Figure out how to combine the two parts.

