Binary Search




Phone book



* Like linear search, binary search finds whether
a certain item (the key) is in an array.
* Binary search only works on sorted arrays.

— Binary search takes advantage of the array being
sorted to make the search much faster.



key = 33

012345067 891011121314

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97



key = 33

011123]4 516 7 8910111211314

6 13 14 25 33 43 5164 72 84 93 95 96 97




key = 33

0112345

6 13 14 25 33 43 51




key = 33

01234506

6 13 14 25 33 43 51




key = 33

01102 3 456

6 13 1433 43 51




key = 33

33 43 51




key = 33

33 43 51




key = 33

4 5 6

3351




key = 33




key = 33




key = 33
Found! (return 4)




We are given
— an array (called array) of size n, indexed from 0 to n-1
— an integer key to look for in the array

— an integer low that is the lowest index in the array that could
contain the key

— an integer high that is the highest index in the array that could
contain the key

If low > high, then the item is not found (return -1)
Compute the middle index in the array.
If the item at the middle index is the key, return that index.

If the item at the middle index is greater than the key,
repeat from step 2, on the left sub-array.

If the item at the middle index is less than the key, repeat
from step 2 on the right sub-array.



e Three variables that do most of the work:

— low: the smallest index that could possibly contain
the key.

— high: the largest index that could possibly contain
the key.

— mid: the midpoint of the two indices.



f low > high, we know the item is not found (stop).
f array[mid] == key, item is found (stop).

f array[mid] > key, repeat algorithm with only the
eft half of the array.

f array[mid] < key, repeat algorithm with only the
right half of the array.



key = 33

Ii/ hih
012345067 891011121314

6 13 14 25 33 43 51 53 64 72 84 93 95 96 97




key = 33

011123]4 516 7 8910111211314

6 13 14 25 33 43 5164 72 84 93 95 96 97




key = 33

¥

0112345

6 13 14 25 33 43 51




key = 33

¥

hih
0112345

6 13 14 25 33 43 51







key = 33

hih
5 6

33 43 51




key = 33

@ hih

33 43 51




key = 33




key = 33




key = 33




key = 33
Found!




* |f low > high, we know the item is not found (stop).
 |f array[mid] == key, item is found (stop).

* |f array[mid] > key, repeat algorithm with only the
left half of the array.

— How do we change low & high?

* |f array[mid] < key, repeat algorithm with only the
right half of the array.

— How do we change low & high?



* |f low > high, we know the item is not found (stop).
 |f array[mid] == key, item is found (stop).

* |f array[mid] > key, repeat algorithm with only the
left half of the array.

— How do we change low & high?
— high =mid -1
* |f array[mid] < key, repeat algorithm with only the
right half of the array.
— How do we change low & high?
—low =mid +1



Recursive formulation

* Function: binarySearch(array, key, low, high)
* Base cases:

— |f found key: Return position found.
— If low > high: Return -1 (indicating not found).
* Recursive cases:
— If array[mid] > key: binarySearch(array, key, low, mid — 1)
— If array[mid] < key: binarySearch(array, key, mid + 1, high)



