Naïve Bayes Classifiers

Review

- Let event $\mathrm{D}=$ data we have observed.
- Let events $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{n}}$ be events representing the n hypotheses we want to choose between.
- Use D to pick the "best" H.
- There are two "standard" ways to do this, depending on what information we have available.

Maximum likelihood hypothesis

- The maximum likelihood hypothesis $\left(\mathrm{H}^{\mathrm{ML}}\right)$ is the hypothesis that maximizes the probability of the data given that hypothesis.

$$
H^{\mathrm{ML}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right)
$$

- How to use it: compute P(D| H_{i}) for each hypothesis (1 through n) and select the one with the greatest value.

Maximum a posteriori (MAP) hypothesis

- The MAP hypothesis is the hypothesis that maximizes the posterior probability:

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(H_{i} \mid D\right) \\
& =\underset{i}{\operatorname{argmax}} \frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& \propto \underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- The $\mathrm{P}\left(\mathrm{D} \mid \mathrm{H}_{\mathrm{i}}\right)$ terms are now weighted by the hypothesis prior probabilities.

Posterior probability

- If you need the actual posterior probability for some hypothesis H_{i} :

$$
\begin{aligned}
P\left(H_{i} \mid D\right) & =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D, H_{j}\right)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
\end{aligned}
$$

Combining evidence

- If we have multiple pieces of data/evidence (say two pieces), then we need to compute or estimate

$$
P\left(D_{1}, D_{2} \mid H_{i}\right)
$$

which is often hard.

- Instead, we assume all pieces of evidence are conditionally independent given a hypothesis:

$$
P\left(D_{1}, D_{2} \mid H_{i}\right)=P\left(D_{1} \mid H_{i}\right) P\left(D_{2} \mid H_{i}\right)
$$

- This assumption is most likely not true, but we do it to make our lives easier.

Combining evidence (m pieces)

$$
\begin{aligned}
P\left(H_{i} \mid D_{1}, \ldots, D_{m}\right) & =\frac{P\left(D_{1}, \ldots, D_{m} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)} \\
& =\frac{\left[P\left(D_{1} \mid H_{i}\right) \ldots P\left(D_{m} \mid H_{i}\right)\right] P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)} \\
& =\frac{\left[\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right] P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)}
\end{aligned}
$$

where

$$
P\left(D_{1} \ldots, D_{m}\right)=\sum_{k=1}^{n}\left(\left[\prod_{j=1}^{m} P\left(D_{j} \mid H_{k}\right)\right] P\left(H_{k}\right)\right)
$$

Classification

- Classification is the problem of identifying which of a set categories (called classes) a particular item belongs in.
- Lots of real-world problems are classification problems:
- spam filtering (classes: spam/not-spam)
- handwriting recognition \& OCR (classes: one for each letter, number, or symbol)
- text classification, image classification, music classification, etc.
- Almost any problem where you are assigning a label to items can be set up as a classification task.

Classification

- An algorithm that does classification is called a classifier. Classifiers take an item as input and output the class it thinks that item belongs to. That is, the classifier predicts a class for each item.
- Lots of classifiers are based on probabilities and statistical inference:
- The classes become the hypotheses being tested.
- The item being classified is turned into a collection of data called features. Useful features are attributes of the item that are strongly correlated with certain classes.
- The classification algorithm is usually ML or MAP, depending on what data we have available.

Example: Spam classification

- New email arrives: is it spam or not spam?
- A useful set of features might be the presence or absence of various words in the email:
- F1, ~F1: the word "luxury" appears/does not appear
- F2, ~F2: the word "save" appears/does not appear
- F3, ~F3: the word "brands" appears/does not appear
- Let's say our new email contains "luxury" and "brands," but not "save."
- The features for this email are F1, ~F2, and F3.
- Let's use MAP for classification.

Example: Spam classification

- Features $=$ Data $=\mathrm{D}=\mathrm{F} 1, \sim \mathrm{~F} 2, \mathrm{~F} 3$.

$$
\begin{aligned}
& H^{\mathrm{MAP}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& H^{\mathrm{MAP}}=\underset{i \in\{\text { spam,not-spam }\}}{\operatorname{argmax}} P\left(F_{1}, \neg F_{2}, F_{3} \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

Example: Spam classification

- Features = Data $=\mathrm{D}=\mathrm{F} 1, ~ \sim F 2, ~ F 3$.

$$
\begin{aligned}
& H^{\mathrm{MAP}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& H^{\mathrm{MAP}}=\underset{i \in\{\text { spam,not-spam }\}}{\operatorname{argmax}} P\left(F_{1}, \neg F_{2}, F_{3} \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- Let's assume all the features are conditionally independent given the hypothesis.

$$
H^{\mathrm{MAP}}=\underset{i \in\{\text { spam,not-spam }\}}{\operatorname{argmax}} P\left(F_{1} \mid H_{i}\right) P\left(\neg F_{2} \mid H_{i}\right) P\left(F_{3} \mid H_{i}\right) P\left(H_{i}\right)
$$

Naïve Bayes

- This is called a Naïve Bayes classifier.
- Assumes the data is a collection of features, and each feature is conditionally independent of all other features given the hypothesis.
- Classifies using MAP hypothesis.

Naïve Bayes

- Hypotheses: H1 through Hn.
- Features (data): F1 through Fm.

$$
H^{\mathrm{MAP}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
$$

$$
=\underset{i}{\operatorname{argmax}} P\left(F_{1}, \ldots, F_{m} \mid H_{i}\right) P\left(H_{i}\right)
$$

$$
=\underset{i}{\operatorname{argmax}}\left[P\left(F_{1} \mid H_{i}\right) \cdots P\left(F_{m} \mid H_{i}\right)\right] P\left(H_{i}\right)
$$

$$
=\underset{i}{\operatorname{argmax}}\left[\prod_{j=1}^{m} P\left(F_{j} \mid H_{i}\right)\right] P\left(H_{i}\right)
$$

Probabilities needed

- $\mathrm{P}\left(H_{j}\right)$ for $\mathrm{i}=1$ to n .
- $\mathrm{P}\left(F_{j} \mid H_{j}\right)$ for $\mathrm{j}=1$ to m and $\mathrm{i}=1$ to n .

Example

- Suppose I know 80% of my email is spam.
- I have three features, "luxury," "brands," and "save."
- I know:
$-P($ luxury \mid spam $)=0.4 \quad P($ luxury $\mid \sim$ spam $)=0.01$
$-P($ brands | spam $)=0.3 \quad P($ brands $\mid \sim$ spam $)=0.2$
$-P($ save \mid spam $)=0.4 \quad P($ save $\mid \sim$ spam $)=0.1$
- Suppose a new, incoming email contains "luxury" and "save" but not "brands." Should it be classified as spam or ${ }^{\sim}$ spam?

Learning probabilities from data

- To use MAP, we need to calculate or estimate $P(\mathrm{Hi})$ and $\mathrm{P}(\mathrm{F} 1, \sim \mathrm{~F} 2, \mathrm{~F} 3 \mid \mathrm{Hi})$ for each i .
- In other words, we need to know:
- P(spam)
- P(not-spam)
- P(F1, ~F2, F3 | spam)
- P(F1, ~F2, F3 | not-spam)
- In the previous example, these were given to us, but what if they weren't?

Learning probabilities from data

- Let's assume we have access to a large number of old emails that are correctly labeled as spam/not-spam.
- How can we estimate P(spam)?

$$
P(\text { spam })=\frac{\# \text { of emails labeled as spam }}{\text { total } \# \text { of emails }}
$$

Learning probabilities from data

- Let's assume we have access to a large number of old emails that are correctly labeled as spam/not-spam.
- How can we estimate P(F1, ~F2, F3 \| spam)?
$P\left(F_{1}, \neg F_{2}, F 3 \mid\right.$ spam $)=\frac{\# \text { of spam emails with those exact features }}{\text { total } \# \text { of spam emails }}$
- Why is this probably going to be a very rough estimate?

Conditional independence to the rescue!

- It is unlikely that our set of old emails contains many messages with that exact set of features.
- Let's assume that all of our features are conditionally independent of each other, given the hypothesis (spam/not-spam).
$P\left(F_{1}, \neg F_{2}, F 3 \mid\right.$ spam $)=$ $P\left(F_{1} \mid\right.$ spam $) \cdot P\left(\neg F_{2} \mid\right.$ spam $) \cdot P\left(F_{3} \mid\right.$ spam $)$
- These probabilities are easier to get good estimates for!

Learning probabilities from data

- So now we need to estimate P(F1 \| spam) instead of P(F1, ~F2, F3 | spam).
- Equivalently, how can we estimate the probability of seeing "luxury" in an email given that the email is spam?
- $P\left(F_{1} \mid\right.$ spam $)=\frac{\# \text { of spam emails with "luxury" }}{\text { total } \# \text { of spam emails }}$

Example

Suppose I have 20 emails that have been already classified into spam (15 emails) and non-spam (5 emails). Suppose I only care about the presence or absence of the words luxury, brands, and save.

Suppose 6 of the spam emails contain "luxury," 3 of the spam emails contain "brands," and 7 of the spam emails contain "save."

Suppose 1 of the non-spam emails contains "luxury," 2 of the non-spam emails contain "brands," and 2 of the non-spam emails contain "save."

Suppose a new email arrives that contains the words "luxury" and "save" but not "brands." Should this be classified as spam or not spam?

Another problem to handle...

- What if we a word never appears in any spam emails? What happens to its probability estimate? (and why is this bad?)
$P\left(F_{j} \mid\right.$ spam $)=\frac{\# \text { of spam emails with word } F_{j}}{\text { total } \# \text { of spam emails }}$
$P\left(\right.$ spam $\left.\mid F 1, \ldots, F_{m}\right)=\frac{\left[\prod_{j=1}^{m} P\left(F_{j} \mid \text { spam }\right)\right] P(\text { spam })}{P\left(F_{1}, \ldots, F_{m}\right)}$
- Probability of zero destroys the entire calculation!

Another problem to handle...

- Fix the estimates:

$$
P\left(F_{j} \mid \text { spam }\right)=\frac{\# \text { of spam emails with word } F_{j}+1}{\text { total } \# \text { of spam emails }+2}
$$

- This is called smoothing. Removes the possibility of a zero probability wiping out the entire calculation.
- Simulates adding two additional spam emails, one containing every word, and containing no words.
- We would also smooth for non-spam: adding two nonspam emails, one with all words, one with no words.

Summary of Naïve Bayes

- Assumes the data is a collection of features, and each feature is conditionally independent of all other features given the hypothesis.
- Classifies using MAP hypothesis.

Example

Suppose I have 20 emails that have been already classified into spam (15 emails) and non-spam (5 emails). Suppose I only care about the presence or absence of the words luxury, brands, and save.

Suppose 6 of the spam emails contain "luxury," 3 of the spam emails contain "brands," and 7 of the spam emails contain "save."

Suppose 1 of the non-spam emails contains "luxury," 2 of the non-spam emails contain "brands," and 2 of the non-spam emails contain "save."

Suppose a new email arrives that contains the words "luxury" and "save" but not "brands." Should this be classified as spam or not spam?

Summary of Naïve Bayes

- Hypotheses: H_{1} through H_{n}.
- Features (data): F_{1} through F_{m}.

$$
H^{\mathrm{MAP}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
$$

$$
=\underset{i}{\operatorname{argmax}} P\left(F_{1}, \ldots, F_{m} \mid H_{i}\right) P\left(H_{i}\right)
$$

$$
=\underset{i}{\operatorname{argmax}}\left[P\left(F_{1} \mid H_{i}\right) \cdots P\left(F_{m} \mid H_{i}\right)\right] P\left(H_{i}\right)
$$

$$
=\underset{i}{\operatorname{argmax}}\left[\prod_{j=1}^{m} P\left(F_{j} \mid H_{i}\right)\right] P\left(H_{i}\right)
$$

Summary of Naïve Bayes

- Probabilities needed to be determined (either given to you or estimated from data):
- $\mathrm{P}\left(H_{j}\right)$ for $\mathrm{i}=1$ to n .
- $P\left(F_{j} \mid H_{j}\right)$ for $\mathrm{j}=1$ to m and $\mathrm{i}=1$ to n .

Summary of Naïve Bayes (for email)

- Naïve Bayes classifies using MAP:

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam,not-spam }\}}{\operatorname{argmax}} P\left(F_{1}, \ldots, F_{m} \mid H_{i}\right) P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam,not-spam }\}}{\operatorname{argmax}}\left[P\left(F_{1} \mid H_{i}\right) \cdots P\left(F_{m} \mid H_{i}\right)\right] P\left(H_{i}\right) \\
& =\underset{i \in\{\text { spam,not-spam }\}}{\operatorname{argmax}}\left[\prod_{j=1}^{m} P\left(F_{j} \mid H_{i}\right)\right] P\left(H_{i}\right)
\end{aligned}
$$

- Compute this for spam and for not-spam; see which is bigger.

Summary of Naïve Bayes (for email)

- Estimating the prior for each hypothesis:

$$
P\left(H_{i}\right)=\frac{\# \text { of emails labeled as } H_{i}}{\text { total } \# \text { of emails }}
$$

- Estimating the probability of a feature given a class (aka likelihood) with smoothing:

$$
P\left(F_{j} \mid H_{i}\right)=\frac{\# \text { of } H_{i} \text { emails with word } F_{j}+1}{\text { total } \# \text { of } H_{i} \text { emails }+2}
$$

