Statistical Inference

Toolbox so far

- Uninformed search
- BFS, DFS, Dijkstra's algorithm (Uniform-cost search)
- Heuristic search
- A*, greedy best-first search
- Probability and Bayes nets
- Exact inference algorithm, approximate inference algorithms

Bayesian networks (Bayes nets)

- Specify a full joint probability distribution.
- Uses conditional and marginal independences to represent information compactly.
- Example of a probabilistic model.
- All probability questions have a unique right answer.
- We can use the exact inference algorithm for Bayes nets to find it.

Real world

- Real world situations are often missing a model (maybe we don't have all the information necessary to create a Bayes net).
- We only have a small handful of observations about the world and we aren't entirely sure about how things relate to each other.
- How can we make probability estimates now?

Statistical inference

- Statistical inference lets us make probability estimations from observations about the way the world works, even if those observations don't tell the full story.
- How likely is this email spam?
- What is the probability it will rain tomorrow?
- If I visit a certain house when trick-or-treating, what is the chance I'll get a Snickers bar?

Types of inference

- Hypothesis testing:
- Given two or more hypotheses (events), decide which one is more likely to be true based on some data.
- Example: Is this email spam or not spam?
- Parameter inference:
- Given a model that is missing some probabilities, estimate those probabilities from data.
- Example: Estimate bias of a coin from flips.

Hypothesis testing

- Let D be the event that we have observed some data.
- Ex: D = received an email containing "cash" and "viagra"
- Sometimes D is also called evidence or observations.
- Let $\mathrm{H}_{1}, \ldots, \mathrm{H}_{\mathrm{k}}$ be disjoint, exhaustive events representing hypotheses to choose between.
$-E x: H_{1}=$ this email is spam, $\mathrm{H}_{2}=$ it's not spam.
- How do we use D to decide which H is most likely?

Maximum likelihood

- Suppose we know or can estimate the probability $P\left(D \mid H_{i}\right)$ for each H_{i}.
- The maximum likelihood (ML) hypothesis is:

$$
\mathrm{H}^{\mathrm{ML}}=
$$

maximum
likelihood hypothesis

$$
H^{M L}=\arg \max _{i} P\left(D \mid H_{i}\right)
$$

- How to use it: compute $P\left(D \mid H_{i}\right)$ for each hypothesis and select the one with the greatest value. What is argmax? It means evaluate $P(\mathrm{D} \mid \mathrm{Hi})$ for all hypotheses Hi and take the *hypothesis* that maximizes $P(D \mid H i)$. This is not a number; this is a hypothesis (an event)!
- Professors Larkins and Sanders bake cookies for all of the CS students! Each professor keeps the cookies in their offices and the students can go pick one up.
- Sanders has baked an equal number of both chocolate chip and oatmeal raisin cookies.
- Larkins has baked chocolate chip and oatmeal raisin and as well, but twice as many oatmeal raisin as chocolate chip.
- I ask my friend to get me a cookie. I know they will visit either Larkins or Sanders. My friend comes back with a chocolate chip cookie.
- Is my cookie more likely to have been baked by Sanders or Larkins?

- I know that when my parents send me a check, there is an 98\% chance that they will send it in a yellow envelope.
- I also know that when my dentist sends me a bill, there is a 5% chance that they will send it in a yellow envelope.
- Suppose a yellow envelope arrives on my doorstep.
- What is the maximum likelihood hypothesis regarding the sender?

Why ML sometimes is bad

- Suppose I tell you that there is a 3\% chance that my any given envelope will be from my parents and a 97\% chance that any given envelope will be from my dentist. Does it still seem likely that the envelope contains a check from my parents?

Bayesian reasoning

- Rather than compute $P\left(D \mid H_{i}\right)$, let's compute $P\left(H_{i} \mid D\right)$.
- What is the posterior probability of H_{i} given D?

$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}=\alpha P\left(D \mid H_{i}\right) P\left(H_{i}\right)
$$

MAP hypothesis

- Maximum a posteriori (MAP) hypothesis is the H_{i} that maximizes the posterior probability:

$$
\begin{aligned}
H^{M A P} & =\operatorname{argmax}_{i} P\left(H_{i} \mid D\right) \\
H^{M A P} & =\operatorname{argmax}_{i} \frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
H^{M A P} & =\operatorname{argmax}_{i} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

ML vs MAP

$$
\begin{aligned}
& H^{M L}=\arg \max _{i} P\left(D \mid H_{i}\right) \\
& H^{M A P}=\operatorname{argmax}_{i} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- The MAP hypothesis takes the prior probability of each hypothesis into account, ML does not.
- Professors Larkins and Sanders bake cookies for all of the CS students! Each professor keeps the cookies in their offices and the students can go pick one up.
- Sanders has baked an equal number of both chocolate chip and oatmeal raisin cookies.
- Larkins has baked chocolate chip and oatmeal raisin and as well, but twice as many oatmeal raisin as chocolate chip.
- I ask my friend to get me a cookie. Suppose I know that my friend picks Larkins' cookies 90% of the time. My friend comes back with a chocolate chip one.
- Is my cookie more likely to have been baked by Larkins or Sanders?
- I know that when my parents send me a check, there is an 98% chance that they will send it in a yellow envelope.
- I know that when my dentist sends me a bill, there is a 5% chance that she will send it in a yellow envelope.
- Unfortunately, I also know that there is a only a 3% chance that any given envelope will be from my parents, while there is a is a 97% chance that any given envelope will be from my dentist.
- Suppose a yellow envelope arrives on my doorstep. What is the MAP hypothesis regarding the sender?
- There are 3 robots.
- Robot 1 will hand you a snack drawn at random from 2 doughnuts and 7 carrots.
- Robot 2 will hand you a snack drawn at random from 4 apples and 3 carrots.
- Robot 3 will hand you a snack drawn at random from 7 burgers and 7 carrots.
- Suppose your friend goes up to a robot (you don't see this happen) and is given a carrot. Which robot did your friend probably approach?
- What if the prior probability of your friend approaching robots 1, 2, and 3 are 20\%, 40\%, and 40\%, respectively?

ML vs MAP

$$
\begin{aligned}
& H^{M L}=\arg \max _{i} P\left(D \mid H_{i}\right) \\
& H^{M A P}=\operatorname{argmax}_{i} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- When are the two hypothesis predictions the same?

Probability vs hypothesis

- Sometimes you only care about which hypothesis is more likely, and sometimes you need the actual probability.

$$
\begin{aligned}
P\left(H_{i} \mid D\right) & =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D, H_{j}\right)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
\end{aligned}
$$

$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
$$

- In the robot problem, what is $\mathrm{P}(\mathrm{R} 3 \mid \mathrm{C})$?

Probability vs hypothesis

- In the robot problem, what is $\mathrm{P}(\mathrm{R} 3 \mid \mathrm{C})$?

$$
\begin{aligned}
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{P(C)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C, R_{i}\right)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C \mid R_{i}\right) P\left(R_{i}\right)}
\end{aligned}
$$

$=(7 / 9 * 2 / 10) /(7 / 9 * 2 / 10+3 / 7 * 4 / 10+1 / 2 * 4 / 10)=\sim 0.2952$

One slide to rule them all

- The maximum likelihood hypothesis is the hypothesis that maximizes the probability of the observed data:

$$
H^{\mathrm{ML}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right)
$$

- The MAP hypothesis is the hypothesis that maximizes the posterior probability given D :

$$
H^{\mathrm{MAP}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
$$

- $P\left(H_{i}\right)$ is called the prior probability (or just prior).
- $P\left(H_{i} \mid D\right)$ is called the posterior probability.
- There are 3 robots.
- Robot 1 will hand you a snack drawn at random from 2 doughnuts and 7 carrots.
- Robot 2 will hand you a snack drawn at random from 4 apples and 3 carrots.
- Robot 3 will hand you a snack drawn at random from 7 burgers and 7 carrots.
- Suppose your friend goes up to a robot (you don't see this happen) and is given a carrot. Which robot did your friend probably approach?
- What if the prior probability of your friend approaching robots 1, 2, and 3 are 20\%, 40\%, and 40\%, respectively?

Probability vs hypothesis

- Sometimes you only care about which hypothesis is more likely, and sometimes you need the actual probability.

$$
\begin{aligned}
P\left(H_{i} \mid D\right) & =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D, H_{j}\right)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
\end{aligned}
$$

$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
$$

- In the robot problem, what is $\mathrm{P}(\mathrm{R} 3 \mid \mathrm{C})$?

Probability vs hypothesis

- In the robot problem, what is $\mathrm{P}(\mathrm{R} 3 \mid \mathrm{C})$?

$$
\begin{aligned}
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{P(C)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C, R_{i}\right)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C \mid R_{i}\right) P\left(R_{i}\right)}
\end{aligned}
$$

$=(7 / 9 * 2 / 10) /(7 / 9 * 2 / 10+3 / 7 * 4 / 10+1 / 2 * 4 / 10)=\sim 0.2952$

- Suppose I work in FJ in a windowless office. I want to know whether it's raining outside. The chance of rain is 70%. My colleague walks in wearing his raincoat. If it's raining, there's a 65\% chance he'll be wearing a raincoat. Since he's very unfashionable, there's a 45\% chance he'll be wearing his raincoat even if it's not raining. My other colleague walks in with wet hair. When it's raining there's a 90% chance her hair will be wet. However, since she sometimes goes to the gym before work, there's a 40% chance her hair will be wet even if it's not raining.
- What's the posterior probability that it's raining?
- We can't solve this problem because we don't have any information about the probability of Colleague 1 wearing a raincoat and Colleague 2 having wet hair occurring simultaneously.
- We don't know P(C, W \| R).
- Let's make an assumption that C and W are conditionally independent given that it is raining (or not raining).
- $P(C, W \mid R)=P(C \mid R)^{*} P(W \mid R)$
- (and similarly for given $\sim R$)

Combining evidence

- It is very common to make this independence assumption for multiple pieces of evidence (data).

$$
\begin{aligned}
P\left(H_{i} \mid D_{1}, \ldots, D_{m}\right) & =\frac{P\left(D_{1}, \ldots, D_{m} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)} \\
& =\frac{\left(P\left(D_{1} \mid H_{i}\right) \cdots P\left(D_{m} \mid H_{i}\right)\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)} \\
& =\frac{\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)}
\end{aligned}
$$

where $P\left(D_{1} \ldots, D_{m}\right)=\sum_{i=1}^{k}\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)$

