Recap

* What things do we need to define in order to
formulate a problem as a search problem?

Emvi araad— StAe
TskRC ik InR <4 <horgiy
sINT C my
ol [nul shfe
Achws n / 7

Costs

* Always a good idea to try to visualize the
graph of the search space.

(4,

®

R LD
ML

1) [T

o — o L
FELOAD

\

215
X
't

Generic search algorithms (3.3)

All search algorithms work in essentially the
same manner:

Start with initial state. (next

Generate all possible successor states (a.k.a.
"expanding a node."

5

. <)R, Y
Pick a new node to expand. &— j(?a%ﬂﬁ‘f

Continue until we find a goal state. ¢t alsacidm.

Search Map T—-A
G

S,‘—t,v\- w, ineh ol stede

&No&cs -+ Szte_

Sﬁarc['\ (}f-eL

There are two simultaneous graph-like structures

used in search algorithms:

— (1) Tree or graph of the underlying state space.

— (2) Tree maintaining the record of the current search
in progress (the search tree).

(1) does not depend on the current search being

run.

(1) is sometimes not even stored in memory (too
big!)
(2) always depends on the current search, and is

always stored in memory. It is created on the fly
during the running of the search algorithm.

O
Search tree !
1@ (DO

* A nodée n of the search tree stores:
— a state (of the state space)
—a pointe/tg(the state's parent node (usually)
(Z12(’ncLe

— the action that got you from the parent to n
(sometimes)

!
—=the path cosdg(n); cost of the path so far from the
initial state to n.

Generic search algorithms
(all based off of "best-first search")

°LFrontie/r:\a data structure storing the collection of
nodes that are available to be examined next in
the algorithm.

— Often represented as a stack, queue, or priority
gueue.

C[ﬁ?eachedja map from nodes to states. Keeps
track of which states have been examined

eploced
" already.

— Often stored using a data structure that enables quick
look-up for membership tests. agd, J=Ll,

S\(fko(d@(_

How do you evaluate a search
algorithm?

Completeness — Does the algorithm always

find[@ solution if one exists?

Optimality — Does the algorithm find the best
solution?

Time complexity — bi5-sh
Space complexity —bie ~s

gninformed search methods

e These methods have no information about

which nodes are on promising paths to a
solution.

* Also called: blind search

Uninformed Search algorithms

* Breadth-first searchv”
* Uniform-cost searchst
* Depth-first searchv”

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <~ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier +—a FIFO queue, with node as an element
reached < {problem.INITIAL}
while not IS-EMPTY(frontier) do
node < POP(frontier)
for each child in EXPAND(problem, node) do
§ ¢~ child . STATE
if problem.1S-GOAL(s) then return child
if 5 is not in reached then
add s to reached
add child to frontier
return failure

Breadth-first search
/;Ill Jhe é.qachd'(u/
* Choose shallowest node for expansion.

e Data structure for frontier?

— Queue (regular) Q(\o > Q

. Complete? Optimal? 'Q__m? Space? OOOO
Ye No - 2
%’M) °"‘"3 'F b bmc‘\ Qj fp:dv‘ \\ { .
al\ cots o ‘ '

&

egyel

Search Map

Depth-first search ;TP
AN

G‘_
* Choose deepest node to expand. H
* Data structure for frontier?

— Stack (or just use recursion)

* Complete? Optimal? Time? Space?
No’ icf'flrfr;w«f‘ No
/o0pS

(j,m, ',;CO a;'n/«f'

M P‘/‘ ~tosf~
Digkstve’ =Uniform-cost search 7 ikl

St A

a‘t'a, Mode

* Choose node with lowest path cost!g(n)}for i
expansion.

e Data structure for frontier?
— Priority queue

e Suppose we come upon the same state twice.
Do we re-add to the frontier?

— Yes, if lower path cost.

Search Map ! ‘j:-—a/) @ 3(7\) =0

