
Recap

• What things do we need to define in order to
formulate a problem as a search problem?

• Always a good idea to try to visualize the
graph of the search space.

Generic search algorithms (3.3)

• All search algorithms work in essentially the
same manner:

• Start with initial state.
• Generate all possible successor states (a.k.a.

"expanding a node."
• Pick a new node to expand.
• Continue until we find a goal state.

• There are two simultaneous graph-like structures
used in search algorithms:
– (1) Tree or graph of the underlying state space.
– (2) Tree maintaining the record of the current search

in progress (the search tree).
• (1) does not depend on the current search being

run.
• (1) is sometimes not even stored in memory (too

big!)
• (2) always depends on the current search, and is

always stored in memory. It is created on the fly
during the running of the search algorithm.

Search tree

• A node n of the search tree stores:
– a state (of the state space)
– a pointer to the state's parent node (usually)
– the action that got you from the parent to n

(sometimes)
– the path cost g(n): cost of the path so far from the

initial state to n.

Generic search algorithms
(all based off of "best-first search")

• Frontier: a data structure storing the collection of
nodes that are available to be examined next in
the algorithm.
– Often represented as a stack, queue, or priority

queue.
• Reached: a map from nodes to states. Keeps

track of which states have been examined
already.
– Often stored using a data structure that enables quick

look-up for membership tests.

How do you evaluate a search
algorithm?

• Completeness — Does the algorithm always
find a solution if one exists?

• Optimality — Does the algorithm find the best
solution?

• Time complexity
• Space complexity

Uninformed search methods

• These methods have no information about
which nodes are on promising paths to a
solution.

• Also called: blind search

Uninformed Search algorithms

• Breadth-first search
• Uniform-cost search
• Depth-first search

Breadth-first search

• Choose shallowest node for expansion.
• Data structure for frontier?
– Queue (regular)

• Complete? Optimal? Time? Space?

Depth-first search

• Choose deepest node to expand.
• Data structure for frontier?
– Stack (or just use recursion)

• Complete? Optimal? Time? Space?

Uniform-cost search

• Choose node with lowest path cost g(n) for
expansion.

• Data structure for frontier?
– Priority queue

• Suppose we come upon the same state twice.
Do we re-add to the frontier?
– Yes, if lower path cost.

