Formulate Roomba problem

/OCM[)'“'Q &WLQ f’%
C/l?o-\/al:‘rl-; ke =Y (T/F 17F
eeh /S .
ORI

Recap

* What things do we need to define in order to
formulate a problem as a search problem?

Fav Stefe
InT f‘ ”Ql@ﬂbt
‘ /y,ws

ol 9T Cst

* Always a good idea to try to visualize the
gpgfof the search space.

(\‘l*\

G-ﬂ.'j. Y

LG‘@‘E

sﬂD Gaﬂ ;_'L. 4

®

®

L(F B EDH

e 7

Gt geal slrled

%.—
Qu'uiz
/sliding bleck
2o

d

(Fph

Generic search algorithms (3.3)

All search algorithms work in essentially the
same manner:

Start with initial state. - .
rapt Sffey

Generate all possible successor states (a.k.a.
"expanding a node."

Pick a new node to expand.<— Dilrnfeks eoch
s

Continue until we find a goal state.

There are two simultaneous graph-like structures
used in search algorlthms
—— afmsst ok p
(1) Tree o(graph of the underlying state space.

— (2) Tree maintaining the record of the current search
in progress (the search tree). B

(1) does not depend on the current search being
run.

(1) is sometimes not even stored in memory (too
big!)
(2) always depends on the current search, and is

always stored in memory. It is created on the fly
during the running of the search algorithm.

o
D ®O®

. A@of the search tree stores:
—>> a state (of the state space)

Search tree

—a pomte/t the state's parent node (usually)

— the action that got you from the parentton
(sometimes)

..__?the path cost/g@ ’cost of the path|so far(from the

|n|t|aI state to n.

Generic search algorithms
(all based off of "best-first search")

* Frontier: a data structure storing the collection of
nodes that are available to be examined next in
the algorithm.

— Often represented as a stack, queue, or priority

queue. /“’j val e
* Reached: a map from nodes to states. Keeps

track of which states have been examined
already.

— Often stored using a data structure that enables quick
look-up for membership tests. hay\/\ able

25 BST

How do you evaluate a search
algorithm?
Completeness — Does the algorithm always
fin@solution if one exists? /ougﬁj

Optimality — Does the algorithm find the best
solution?

Time complexity — @ bis~h
Space complexity — mapsece. momen uwege — big~ols

Uninformed search methods

e These methods have no information about

which nodes are on promising paths to a
solution.

* Also called: blind search

Uninformed Search algorithms

_» Breadth-first search
% Uniform-cost search
> Depth-first search

function BREADTH-FIRST-SEARCH(problem) returns a solution node or failure
node <~ NODE(problem.INITIAL)
if problem.1S-GOAL(node.STATE) then return node
frontier +—a FIFO queue, with node as an element
reached < {problem.INITIAL}
while not IS-EMPTY(frontier) do
node < POP(frontier)
for each child in EXPAND(problem, node) do
§ ¢~ child . STATE
if problem.1S-GOAL(s) then return child
if 5 is not in reached then
add s to reached
add child to frontier
return failure

% 2< Breadth-first search

OOHO60 Q00

* Choose shallowest node for expansion.

e Data structure for frontier? %
O

— Queue (regular)

¢
* Complete? Optimal? Time? Space? — OQO)

\/es No jonless, ((03
AN Cosks J; e
e tha achord e(irm & S“fzk
ARt

Depth-first search (DFS)

* Choose deepest node to expand.
e Data structure for frontier?
— Stack (or just use recursion)

* Complete? Optimal? Tlme? Space?

——ENO vhleu /VD

\Kﬁﬂl ()M\/M""

(\gm | fcvsoq
do)

| . 7(3(eost 5o
i ksd= =Uniform-cost search ”écf fooe
/ /s 7%/‘
* Choose node with lowest path cost for 7

expansion.

e Data structure for frontier?
— Priority queue

e Suppose we come upon the same state twice.
Do we re-add to the frontier?

— Yes, if lower path cost.

Search Map

