
Terms

• Node: A node is a data structure that represents a node in the search tree. The search tree is not the same thing
as the (tree or graph) of the search space. A node has

o a state
o a parent (pointer/reference to the node in the tree that generated this one)
o an action (the action that was applied to the parent's state to generate this node; often can be omitted

from this data structure)
o path-cost: the total cost of the path from the initial state to this node (aka g(node) or g(n))

• Frontier: The data structure that holds nodes we have yet to expand, usually sorted by f(n) via priority queue,
though can be a stack or plain queue as well.

• Reached: a map/dictionary that stores which states have been "reached" (have had nodes generated for them).

Best-first-search algorithm

BEST-FIRST-SEARCH(problem, f)
 node ß a new node corresponding to the initial state
 frontier ß a priority queue of nodes ordered by f(n), initialized to contain only node
 reached ß a map from states to nodes with one entry mapping the initial state to the node above
 while not IS-EMPTY(frontier):
 node ß pop(frontier) // remove lowest cost node from frontier (smallest f)
 if IS-GOAL(node.state), then return node
 for each child in EXPAND(node):
 s ß child.state
 if s is not in reached or child.path-cost < reached[s].path-cost:
 reached[s] ß child
 add child to frontier
 return failure

EXPAND(node) // returns a list or set of nodes
 make an empty list or set to hold the child nodes
 s ß node.state
 for each action in ACTIONS(s):
 s' ß RESULT(s, action)
 cost ß node.path-cost + ACTION-COST(s, action, s')
 add new Node(state=s', parent=node, action=action, path-cost=cost) to list or set of child nodes
 return the list or set of child nodes

Breadth-first search

