
Q-learning

• Q-learning is a temporal difference learning
algorithm that learns optimal values for Q
(instead of V, as value iteration did).

• The algorithm works in episodes, where the
agent "practices" (aka samples) the MDP to
learn which actions obtain the most rewards.

• Like value iteration, table of Q values
eventually converge to Q*.
(under certain conditions)

• Notice the Q[s, a] update equation is very similar
to the basic TD update equation.
– (The extra γ maxa' Q[s', a'] piece is to handle future

rewards.)
– alpha (0 < α <= 1) is called the learning rate; it controls

how fast the algorithm learns. In stochastic
environments, alpha is usually small, such as 0.1.

• Note: The "choose action" step does not mean you
choose the best action according to your table of Q
values.

• You must balance exploration and exploitation; like in
the real world, the algorithm learns best when you
"practice" the best policy often, but sometimes explore
other actions that may be better in the long run.

• Often the "choose action" step uses policy that mostly
exploits but sometimes explores.

• One common idea: (epsilon-greedy policy)
– With probability 1 - ε, pick the best action (the "a" that

maximizes Q[s, a].
– With probability ε, pick a random action.

• Also common to start with large ε and decrease over
time while learning.

• What makes Q-learning so amazing is that the
Q-values still converge to the optimal Q*
values even though the algorithm itself is not
following the optimal policy!

Simple Blackjack
• Costs $5 to play.
• Infinite deck of shuffled cards, labeled 1, 2, 3.
– (so equal prob of drawing each number at any time)

• You start with no cards. At every turn, you can
either "hit" (take a card) or "stay" (end the game).
Your goal is to get to a sum of 6 without going
over, in which case you lose the game.

• You make all your decisions first, then the dealer
plays the same game.

• If your sum is higher than the dealer's, you win
$10 (your original $5 back, plus another $5).
If lower, you lose (your original $5).
If the same, draw (get your $5 back).

Simple Blackjack
• To set this up as an MDP, we need to automate the 2nd

player (the dealer) in the MDP.
• Usually at casinos, dealers have simple rules they have

to follow anyway about when to hit and when to stay.
• Is it ever optimal to "stay" from S0-S3?
• Assume that on average, if we "stay" from S4/S5/S6,

and then the dealer plays, here's what happens:
– Stay from S4, we win $3 (net $-2).
– Stay from S5, we win $6 (net $1).
– Stay from S6, we win $7 (net $2).

• Do you even want to play this game? (Does it make
financial sense?)

• What should gamma be?

Q-learning with Blackjack

• Update formula:

• Sample episodes (states and actions):
S0 è Hit è S3 è Stay è End
S0 è Hit è S3 è Hit è S6 è Stay è End
S0 è Hit è S3 è Hit è S5 è Stay è End

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

2-Player Q-learning
Normal update equation:

Normally we always maximize our rewards.
Consider 2-player Q-learning with player A
maximizing and player B minimizing (as in
minimax).

Why does this break the update equation?

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

2-Player Q-learning
Player A's update equation:

Player B's update equation:

Player A's optimal policy output:

Player B's optimal policy output:

Q[s, a] Q[s, a] + ↵
h
r + �min

a0
Q[s0, a0]�Q[s, a]

i

Q[s, a] Q[s, a] + ↵
h
r + �max

a0
Q[s0, a0]�Q[s, a]

i

⇡(s) = argmax
a

Q[s, a]

⇡(s) = argmin
a

Q[s, a]

