Q-learning

* Q-learning is a temporal difference learning
algorithm that learns optimal values for Q
(instead of V, as value iteration did).

* The algorithm works in episodes, where the
agent "practices" (aka samples) the MDP to
learn which actions obtain the most rewards.

e Like value iteration, table of Q values
eventually converge to Q*.

(under certain conditions)

Initialize @Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state
Repeat (for each step of the episode):
Choose action a from state s using policy derived from () (see note below)
Take action a, observe reward r, new state s’
Q[s,a] « Q[s,a]l + a[r + ymaxy Q[s',d'] — Q[s, a]
s« &
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

* Notice the Q[s, a] update equation is very similar
to the basic TD update equation.

— (The extra y max,. Q[s', a'] piece is to handle future
rewards.)

— alpha (0 < a <=1) is called the learning rate; it controls
how fast the algorithm learns. In stochastic
environments, alpha is usually small, such as 0.1.

Initialize @Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state

Repeat (for each step of the episode):
Choose action a from state s using policy derived from () (see note below)

Take action a, observe reward r, new state s’
Q[s,a] + Q[s,a] + a[r + ymaxy Q[s', d'] — Q[s, a]
s« &
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

* Note: The "choose action" step does not mean you
choose the best action according to your table of Q
values.

* You must balance exploration and exploitation; like in
the real world, the algorithm learns best when you
"practice" the best policy often, but sometimes explore

other actions that may be better in the long run.

Initialize @Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state
Repeat (for each step of the episode):
Choose action a from state s using policy derived from () (see note below)
Take action a, observe reward r, new state s’
Q[s,a] « Q[s,a]l + a[r + ymaxy Q[s',d'] — Q[s, a]
s« &
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

e Often the "choose action" step uses policy that mostly
exploits but sometimes explores.

* One common idea: (epsilon-greedy policy)
— With probability 1 - g, pick the best action (the "a" that

maximizes QJs, a].

— With probability €, pick a random action.

* Also common to start with large € and decrease over
time while learning.

Initialize @Q[s, a] arbitrarily, e.g., Q[s,a] = 0 for all (s, a) pairs.
Repeat (for each episode):
Set s to the start state
Repeat (for each step of the episode):
Choose action a from state s using policy derived from () (see note below)
Take action a, observe reward r, new state s’
Q[s,a] « Q[s,a]l + a[r + ymaxy Q[s',d'] — Q[s, a]
s« &
until s is a final state
Output a policy m where 7(s) = argmax, Q(s, a)

 What makes Q-learning so amazing is that the
Q-values still converge to the optimal Q*
values even though the algorithm itself is not
following the optimal policy!

Simple Blackjack

Costs S5 to play.
Infinite deck of shuffled cards, labeled 1, 2, 3.

— (so equal prob of drawing each number at any time)

You start with no cards. At every turn, you can
either "hit" (take a card) or "stay" (end the game).
Your goal is to get to a sum of 6 without going
over, in which case you lose the game.

You make all your decisions first, then the dealer
plays the same game.

If your sum is higher than the dealer's, you win
$10 (your original S5 back, plus another S5).

If lower, you lose (your original $5).

If the same, draw (get your S5 back).

Simple Blackjack

To set this up as an MDP, we need to automate the 2"
player (the dealer) in the MDP.

Usually at casinos, dealers have simple rules they have
to follow anyway about when to hit and when to stay.

s it ever optimal to "stay" from S0-S37?

Assume that on average, if we "stay" from S4/S5/S6,
and then the dealer plays, here's what happens:

— Stay from S4, we win S3 (net S-2).

— Stay from S5, we win S6 (net S1).

— Stay from S6, we win S7 (net S2).

Do you even want to play this game? (Does it make
financial sense?)

What should gamma be?

Q-learning with Blackjack

* Update formula:
Q[s,a] < Q[s,a] + a |r + ymaxQ[s’, a’] — Q[s, d]

* Sample episodes (states and actions):
SO =» Hit = S3 = Stay = End
SO =» Hit =» S3 =» Hit =» S6 =» Stay = End
SO =» Hit =» S3 = Hit =» S5 =» Stay = End

2-Player Q-learning
Normal update equation:
Q[s,a] < Q[s,a] + a |r + ymaxQ[s’,a’] — Q[s, q]

Normally we always maximize our rewards.
Consider 2-player Q-learning with player A
maximizing and player B minimizing (as in
minimax).

Why does this break the update equation?

2-Player Q-learning
Player A's update equation:
s,a] «+ Q|s,a] + « {T—I—vme[s a'] — Q[s,a]}
Player B's update equation:

s,a] +— Qls,a| + a Lr%—*ymax@[s a'] — Q[S,a]}
Player A's optimal policy output:

7(s) = argmax ()[s, a

Player B's optimal |5Lolicy output:

m(s) = argmin Q)|s, a

