
Policies and value functions
• Almost all RL algorithms are based around

computing, estimating, or learning policies and
value functions.

• A policy (usually π) is a function from states to
actions that tells you what action you should do in
each state.

• A value function represents the expected future
reward from either a state, or a state-action pair.
– Vπ (s): If we are in state s, and follow policy π, what is the

total future reward we will see, on average?
– Qπ (s, a): If we are in state s, and take action a, then

follow policy π, what is the total future reward we will
see, on average?

Optimal policies

• Given an MDP, there is always a "best" policy,
called π*.

• The point of RL is to discover this policy by
employing various algorithms.
– Some algorithms can use sub-optimal policies to

discover π*.
• We denote the value functions corresponding

to the optimal policy by V*(s) and Q*(s, a).

Bellman equations

• The V*(s) and Q*(s, a)
functions always satisfy
certain recursive
relationships for any MDP.

• These relationships, in the
form of equations, are
called the Bellman
equations.

Recursive relationship of V* and Q*:

V ⇤(s) = max
a

Q⇤(s, a)

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

The expected future rewards from a state s is equal to
the expected future rewards obtained by choosing the
best action from that state.

The expected future rewards obtained by taking an
action from a state is the weighted average of the
expected future rewards from the new state.

Bellman equations

• No closed-form solution in general.
• Instead, most RL algorithms use these equations

in various ways to estimate V* or Q*. An optimal
policy can be derived from either V* or Q*.

V ⇤(s) = max
a

X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �max

a0
Q⇤(s0, a0)

⇤

RL algorithms
• Goal of RL algorithm: estimate V* or Q* (and then

derive optimal policy π* from that.
• One way of classifying RL algorithms by whether or not

the algorithm requires a full model of the environment.
• In other words, do we know P(s' | s, a) and R(s, a, s')

for all combinations of s, a, s'?
– If we have this information (uncommon in the real world),

we can estimate V* or Q* directly with very good accuracy.
– If we don't have this information, we can estimate V* or

Q* from experience or simulations.

Value iteration

• Value iteration is an algorithm that computes
an optimal policy, given a full model of the
environment.

• Algorithm is derived directly from the Bellman
equations (usually for V*, but can use Q* as
well).

Value iteration
• Two steps:
• Estimate V(s) for every state.
– For each state:

• Simulate taking every possible action from that state and
examine the probabilities for transitioning into every
possible successor state. Weight the rewards you would
receive by the probabilities that you receive them.

• Find the action that gave you the most reward, and
remember how much reward it was.

• Compute the optimal policy by doing the first
step again, but this time remember the actions
that give you the most reward, not the reward
itself.

Value iteration
• Value iteration maintains a table of V values,

one for each state. Each value V[s] eventually
converges to the true value V*(s).

• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:

– Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

– Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

– Any movement that would take you off the board moves you as
far in that direction as possible or keeps you where you are.

• γ (gamma) = 0.9

Running value iteration:

initial: 0 0 0 0

after
rd 1: 0 5 5 0

after
rd 2: 2.25 5 7.25 0

V[s] values converge to:

6.47 7.91 8.56 0

How do we use these to compute π(s)?

Computing an optimal policy from V[s]

• Last step of the value iteration algorithm:

• In other words, run one last time through the
value iteration equation for each state, and
pick the action a for each state s that
maximizes the expected reward.

⇡(s) = argmax
a

X

s0

P (s0 | s, a)[R(s, a, s0) + �V [s0]]

V[s] values converge to:

6.47 7.91 8.56 0

Optimal policy:

A B B ---

Learning from experience

• What if we don't know the exact model of the
environment, but we are allowed to sample
from it?
– That is, we are allowed to "practice" the MDP as

much as we want.
– This echoes real-life experience.

• One way to do this is temporal difference
learning (TD learning).

Temporal difference learning

• We want to compute V(s) or Q(s, a).

• TD learning uses the idea of taking lots of
samples of V or Q (from the MDP) and
averaging them to get a good estimate.

• Let's see how TD learning works.

Example: Rolling a die

• Basic TD equation:

• V(s) = V(s) + !(reward – V(s))

• But what if our reward comes in pieces, not all
at once?

• total reward = one step reward + rest of reward

• total reward = rt + "V(s')

• V(s) = V(s) + ![rt + "V(s') – V(s)]

