
Policies and value functions
• Almost all RL algorithms are based around 

computing, estimating, or learning policies and 
value functions.

• A policy (usually π) is a function from states to 
actions that tells you what action you should do in 
each state. 

• A value function represents the expected future 
reward from either a state, or a state-action pair.
– Vπ (s): If we are in state s, and follow policy π, what is the 

total future reward we will see, on average?
– Qπ (s, a): If we are in state s, and take action a, then 

follow policy π, what is the total future reward we will 
see, on average?



Optimal policies

• Given an MDP, there is always a "best" policy, 
called π*.

• The point of RL is to discover this policy by 
employing various algorithms.
– Some algorithms can use sub-optimal policies to 

discover π*.
• We denote the value functions corresponding 

to the optimal policy by V*(s) and Q*(s, a).



Bellman equations

• The V*(s) and Q*(s, a) 
functions always satisfy 
certain recursive 
relationships for any MDP.

• These relationships, in the 
form of equations, are 
called the Bellman 
equations.



Recursive relationship of V* and Q*:

V ⇤(s) = max
a

Q⇤(s, a)

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

The expected future rewards from a state s is equal to 
the expected future rewards obtained by choosing the 
best action from that state.

The expected future rewards obtained by taking an 
action from a state is the weighted average of the 
expected future rewards from the new state.



Bellman equations

• No closed-form solution in general.
• Instead, most RL algorithms use these equations 

in various ways to estimate V* or Q*.  An optimal 
policy can be derived from either V* or Q*.

V ⇤(s) = max
a

X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �V ⇤(s0)

⇤

Q⇤(s, a) =
X

s0

P (s0 | s, a)
⇥
R(s, a, s0) + �max

a0
Q⇤(s0, a0)

⇤



RL algorithms
• Goal of RL algorithm: estimate V* or Q* (and then 

derive optimal policy π* from that.
• One way of classifying RL algorithms by whether or not 

the algorithm requires a full model of the environment.
• In other words, do we know P(s' | s, a) and R(s, a, s') 

for all combinations of s, a, s'?
– If we have this information (uncommon in the real world), 

we can estimate V* or Q* directly with very good accuracy.
– If we don't have this information, we can estimate V* or 

Q* from experience or simulations.



Value iteration

• Value iteration is an algorithm that computes 
an optimal policy, given a full model of the 
environment.

• Algorithm is derived directly from the Bellman 
equations (usually for V*, but can use Q* as 
well).



Value iteration
• Two steps:
• Estimate V(s) for every state.
– For each state:

• Simulate taking every possible action from that state and 
examine the probabilities for transitioning into every 
possible successor state.  Weight the rewards you would 
receive by the probabilities that you receive them.

• Find the action that gave you the most reward, and 
remember how much reward it was.

• Compute the optimal policy by doing the first 
step again, but this time remember the actions 
that give you the most reward, not the reward 
itself.



Value iteration
• Value iteration maintains a table of V values, 

one for each state.  Each value V[s] eventually 
converges to the true value V*(s).



• Grass gives a reward of 0.
• Monster gives a reward of -5.
• Pot of gold gives a reward of +10 (and ends game).
• Two actions are always available:

– Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

– Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

– Any movement that would take you off the board moves you as 
far in that direction as possible or keeps you where you are.

• γ (gamma) = 0.9



Running value iteration:

initial:  0                 0                  0                   0

after
rd 1:     0                 5                  5                   0

after
rd 2:   2.25             5                7.25                0



V[s] values converge to:

6.47            7.91            8.56                0

How do we use these to compute π(s)?  



Computing an optimal policy from V[s]

• Last step of the value iteration algorithm:

• In other words, run one last time through the 
value iteration equation for each state, and 
pick the action a for each state s that 
maximizes the expected reward.

⇡(s) = argmax
a

X

s0

P (s0 | s, a)[R(s, a, s0) + �V [s0]]



V[s] values converge to:

6.47            7.91            8.56                0

Optimal policy:

A                  B                  B                 ---



Learning from experience

• What if we don't know the exact model of the 
environment, but we are allowed to sample
from it?
– That is, we are allowed to "practice" the MDP as 

much as we want.
– This echoes real-life experience.

• One way to do this is temporal difference 
learning (TD learning).



Temporal difference learning

• We want to compute V(s) or Q(s, a).

• TD learning uses the idea of taking lots of 
samples of V or Q (from the MDP) and 
averaging them to get a good estimate.

• Let's see how TD learning works.



Example: Rolling a die

• Basic TD equation:

• V(s) = V(s) + !(reward – V(s))

• But what if our reward comes in pieces, not all 
at once?

• total reward = one step reward + rest of reward

• total reward = rt + "V(s')

• V(s) = V(s) + ![rt + "V(s') – V(s)]


