Reinforcement Learning



What is reinforcement learning?

 Three machine learning paradigms:
— Supervised learning
— Unsupervised learning (overlaps w/ data mining)
— Reinforcement learning

* |n reinforcement learning, the agent receives
incremental pieces of feedback, called
rewards, that it uses to judge whether it is

acting correctly or not.



Examples of real-life RL

Learning to play chess.
Animals (or toddlers) learning to walk.
Driving to school or work in the morning.

Key idea: Most RL tasks are episodic, meaning
they repeat many times.
— So unlike in other Al problems where you have

one shot to get it right, in RL, it's OK to take time
to try different things to see what's best.



n-armed bandit problem

You have n slot machines.

When you play a slot machine,

it provides you a reward (negative
or positive) according to some fixed
probability distribution.

Each machine may have a different
probability distribution, and you don't know the
distributions ahead of time.

You want to maximize the amount of reward
(money) you get.

In what order and how many times do you play
the machines?




RL problems

* Every RL problem is structured similarly.

 We have an environment, which consists of a set
of states, and actions that can be taken in various
states.

— Environment is often stochastic (there is an element
of chance).

— Environment can be fully or partially observable (here,
we will focus on fully observable).

* Our RL agent wishes to learn a policy, 1, a
function that maps states to actions.

— 1t(s) tells you what action to take in a state s.



What is the goal in RL?

* |n other Al problems, the "goal" is to get to a
certain state. Not in RL!

* A RL environment gives feedback every time the
agent takes an action. This is called a reward.

— Rewards are usually numbers.
— Goal: Agent wants to maximize the amount of reward

It gets over time.
— Critical point: Rewards are given by the environment,
not the agent.



Mathematics of rewards

Assume our rewards are ry, 1, I, ...

What expression represents our total
rewards?

How do we maximize this? Is this a good idea?

Use discounting: at each time step, the reward
is discounted by a factor of y (called the
discount rate).

Future rewards from time t =

Tt T YTt4+1 +727“t+2+°“ :ZVkTHk
k=0



Markov Decision Processes

An MDP has a set of states, S, and a set of
actions, A(s), for every state sin S.

An MDP encodes the probability of
transitioning from state s to state s' on action

a: P(s' | s, a)

RL also requires a reward function, usually
denoted by R(s, a, s') = reward for being in
state s, taking action a, and arriving in state s'.

An MDP is a Markov chain that allows for
outside actions to influence the transitions.



Grass gives a reward of 0.
Monster gives a reward of -5.
Pot of gold gives a reward of +10 (and ends game).

Two actions are always available:

— Action A: 50% chance of moving right 1 square,
50% chance of staying where you are.

— Action B: 50% chance of moving right 2 squares,
50% chance of moving left 1 square.

— Any movement that would take you off the board moves you as
far in that direction as possible or keeps you where you are.



Policies and value functions

* Almost all RL algorithms are based around
computing, estimating, or learning policies and

value functions.

e A policy (usually ) is a function from states to
actions that tells you what action you should do in
each state.

* A value function represents the expected future
reward from either a state, or a state-action pair.

— V™ (s): If we are in state s, and follow policy i, what is the
total future reward we will see, on average?

— Q" (s, a): If we are in state s, and take action a, then
follow policy i, what is the total future reward we will

see, on average?



Optimal policies

* Given an MDP, there is always a "best" policy,
called mt*.

* The point of RL is to discover this policy by
employing various algorithms.

— Some algorithms can use sub-optimal policies to
discover ™.

 We denote the value functions corresponding
to the optimal policy by V*(s) and Q*(s, a).



