Rules of Probability

- Definition of conditional probability: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{A}, \mathrm{B}) / \mathrm{P}(\mathrm{B})$
- Product rule: $\mathrm{P}(\mathrm{A}, \mathrm{B})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \mathrm{P}(\mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A})$
- Bayes' rule: $\mathrm{P}(\mathrm{A} \mid \mathrm{B})=\mathrm{P}(\mathrm{B} \mid \mathrm{A}) \mathrm{P}(\mathrm{A}) / \mathrm{P}(\mathrm{B})$
- Chain rule: $\mathrm{P}(\mathrm{A}, \mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \mathrm{P}(\mathrm{B}, \mathrm{C})=\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{C}) \mathrm{P}(\mathrm{B} \mid \mathrm{C}) \mathrm{P}(\mathrm{C})$
- $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A} v \mathrm{~B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}, \mathrm{B})$
- $\mathrm{P}(\sim \mathrm{A})=1-\mathrm{P}(\mathrm{A})$
- Marginalization, or summing out: $P(Y)=\sum_{z} P(Y, Z=z)=\sum_{z} P(Y, z)$
- Conditioning, or law of total probability: $P(Y)=\sum_{z} P(Y, z)=\sum_{z} P(Y \mid z) P(z)$
- Example for binary rvs: $\mathrm{P}(\mathrm{a})=\mathrm{P}(\mathrm{a}, \mathrm{b})+\mathrm{P}(\mathrm{a}, \sim \mathrm{b})=\mathrm{P}(\mathrm{a} \mid \mathrm{b}) \mathrm{P}(\mathrm{b})+\mathrm{P}(\mathrm{a} \mid \sim \mathrm{b}) \mathrm{P}(\sim \mathrm{b})$
- General inference in a full joint probability distribution: Given we want to find a probability distribution for rv X, given the values (e) of evidence variables E, and Y represents the remaining unknown variables.

$$
P(\boldsymbol{X} \mid e)=\alpha \cdot P(\boldsymbol{X}, e)=\alpha \sum_{y \in Y} P(\boldsymbol{X}, e, y)
$$

- If X and Y are (marginally) independent, then
$\mathrm{P}(\mathrm{X}, \mathrm{Y})=\mathrm{P}(\mathrm{X}) \mathrm{P}(\mathrm{Y})$ and $\mathrm{P}(\mathrm{X} \mid \mathrm{Y})=\mathrm{P}(\mathrm{X})$ and $\mathrm{P}(\mathrm{Y} \mid \mathrm{X})=\mathrm{P}(\mathrm{Y})$
- If X and Y are conditionally independent given Z, then
$\mathrm{P}(\mathrm{X}, \mathrm{Y} \mid \mathrm{Z})=\mathrm{P}(\mathrm{X} \mid \mathrm{Z}) \mathrm{P}(\mathrm{Y} \mid \mathrm{Z})$ and $\mathrm{P}(\mathrm{X} \mid \mathrm{Y}, \mathrm{Z})=\mathrm{P}(\mathrm{X} \mid \mathrm{Z})$ and $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}, \mathrm{Z})=\mathrm{P}(\mathrm{Y} \mid \mathrm{Z})$

	toothache		-toothache	
	catch	-catch	catch	-catch
cavity	0.108	0.012	0.072	0.008
-cavity	0.016	0.064	0.144	0.576

