Single layer feed forward networks

- One input layer (which is just the raw inputs).
- One output layer (of perceptron units).
- Let's design a network to add two bits together.
- Needs two inputs (x₁, x₂), and two outputs (y₃, y₄).

Single layer feed forward networks

- There is an algorithm to change the weights of a single-layer network to make the network learn any function...
- Initialize starting weights randomly
- Do until you want to stop (typically when accuracy is good enough or weights stop changing):
 - for each training example (x, y):
 - use NN to get prediction of h(x)
 - if h(x) differs from y, update all weights:
 - w[i] = w[i] + (y h(x)) * x[i]
 - compute accuracy over entire training data = (# predicted correctly)/(# of training examples)

Single layer feed forward networks

- There is an algorithm to change the weights of a single-layer network to make the network learn any function...
- as long as it is linearly-separable!

Multi-layer feed forward networks

- Learning is done through the backpropagation algorithm (*backprop*).
- Derived through calculus (we will skip).

repeat

for each weight $w_{i,j}$ in network do $w_{i,j} \leftarrow$ a small random number for each example (x, y) in examples do / * Propagate the inputs forward to compute the outputs */ for each node *i* in the input layer do $a_i \leftarrow x_i$ for $\ell = 2$ to L do for each node j in layer ℓ do $in_j \leftarrow \sum_i w_{i,j} a_i$ $a_i \leftarrow g(in_i)$ / * Propagate deltas backward from output layer to input layer */ for each node j in the output layer do $\Delta[j] \leftarrow q'(in_j) \times (y_j - a_j)$ for $\ell = L - 1$ to 1 do for each node *i* in layer ℓ do $\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$ /* Update every weight in network using deltas */ for each weight $w_{i,j}$ in network do $w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$ until some stopping criterion is satisfied return *network*

Backprop highlights

repeat

for each weight $w_{i,j}$ in network do $w_{i,j} \leftarrow$ a small random number for each example (\mathbf{x}, \mathbf{y}) in examples do / * Propagate the inputs forward to compute the outputs * /for each node i in the input layer do

 $a_i \leftarrow x_i$ for $\ell = 2$ to L do for each node j in layer ℓ do $in_j \leftarrow \sum_i w_{i,j} a_i$ $a_j \leftarrow g(in_j)$

Backprop highlights

/* Propagate deltas backward from output layer to input layer */
for each node j in the output layer do

 $\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$ for $\ell = L - 1$ to 1 do

for each node i in layer ℓ do

 $\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$

/ * Update every weight in network using deltas * /

for each weight $w_{i,j}$ in network do

 $w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$

Compare

• w[i] = w[i] + (y - h(x)) * x[i]

$$\Delta[j] \leftarrow g'(in_j) \times (y_j - a_j)$$

$$\Delta[i] \leftarrow g'(in_i) \sum_j w_{i,j} \Delta[j]$$

$$w_{i,j} \leftarrow w_{i,j} + \alpha \times a_i \times \Delta[j]$$

- 1943 McCullough-Pitts neuron (can't be trained)
- 1958 Rosenblatt's perceptron (can be trained)
- 1969 Minsky and Papert publish *Perceptrons,* which explains the limits of single-layer NNs.
 - Ushers in first "AI Winter"
- 1982 Backprop algorithm for NNs is published.
 - Was known in the 60s! AI Winter eliminated a lot of AI funding and people were discouraged from working on AI projects.
- 1980s NNs rise again!
- 1989 NNs are "universal approximators."

- 1989 Convolutional NN used to do handwritten digit recognition for ZIP codes. (Yann LeCun)
- 1990s NNs start to be seen as "painfully slow." Takes a long time to train them. At the same time, people start making more and more modifications to make NNs predict things better – adding more layers, making them recurrent etc.
- Mid 90s 2nd Al Winter occurs when everything breaks down and the community loses faith in NNs (too slow, too hard to train with backprop, don't work well, nobody understands them anyway).
 - Move to other models, especially probabilistic.

- Winter continues through early 2000s, though some people continue working on NNs.
- 2006 paper: "A fast learning algorithm for deep belief nets"
 - Key idea don't initialize weights randomly. Start off with a round of unsupervised learning to find reasonable initial values for the weights, then finish with regular supervised learning.
- 2nd key idea pure computational power of GPUs.
 - Massively parallel! 70x faster than training on CPUs.
- 3rd key idea huge data sets.

 2010 – Turns out the activation function used makes a huge difference on training time and performance.

Lessons

- Our labeled datasets were thousands of times too small.
- Our computers were millions of times too slow.
- We initialized the weights in a stupid way.
- We used the wrong type of non-linearity.