Backward algorithm

- Updates previous probabilities to take into account new evidence.
- Calculates $\mathrm{P}\left(\mathrm{X}_{\mathrm{k}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$ for $\mathrm{k}<\mathrm{t}$
- aka smoothing. (not the same kind of smoothing as in Naïve bayes)

Backward algorithm

- Algorithm generates a backward vector b for every timestep t.
- This vector is based on the observation at time k and the next day's backward vector.

$$
b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t}
$$

- The initial backwards vector is for day $t+1$ and is a column vector of all 1's.

$$
b_{t+1: t}=[1 ; \cdots ; 1]
$$

Backwards algorithm

- Each backward vector is used to scale the previous day's forward vector.
- After normalization, this is the updated probability for day k.

$$
P\left(X_{k} \mid e_{1: t}\right)=\alpha f_{1: k} \times b_{k+1: t}
$$

- (Remember, that multiplication above is an item by item multiplication, not a matrix multiplication.)

Backward matrices

- Main equations:

$$
\begin{aligned}
& b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t} \\
& b_{t+1: t}=[1 ; \cdots ; 1] \quad \text { (column vector of } 1 \mathrm{~s} \text {) } \\
& P\left(X_{k} \mid e_{1: t}\right)=\alpha f_{1: k} \times b_{k+1: t}
\end{aligned}
$$

```
f1:0=[0.5, 0.5] f1:1=[0.75,0.25] f1:2=[0.846,0.154]
b1:2=[0.4509, 0.1107] b2:2=[0.69, 0.27] b3:2=[1; 1]
mult=[0.803,0.197] mult=[0.885,0.115]
```


b3:2 $=[1 ; 1]$
b2:2 = T * O2 * b3:2 = [0.69, 0.27]
$P(R 1 \mid u 1, u 2)=\boldsymbol{\alpha} f 1: 1 \times b 2: 2=\boldsymbol{\alpha}[0.5175,0.0675]=[0.885,0.115]$
b1:2 = T * O1 * b2:2 = [0.4509, 0.1107]
$P(R 0 \mid u 1, u 2)=\boldsymbol{\alpha} f 1: 0 \times b 1: 2=\boldsymbol{\alpha}[0.2255,0.0554]=[0.803,0.197]$

Forward-backward algorithm

$$
\begin{aligned}
& f_{1: 0}=P\left(X_{0}\right) \\
& f_{1: t+1}=\alpha f_{1: t} \cdot T \cdot O_{t+1}
\end{aligned}
$$

Compute these forward from X_{0} to wherever you want to stop (X_{t})

$$
\begin{aligned}
& b_{t+1: t}=[1 ; \cdots ; 1] \\
& b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t} \\
& P\left(X_{k} \mid e_{1: t}\right)=\alpha f_{1: k} \times b_{k+1: t}
\end{aligned}
$$

Compute these backwards from $\mathrm{X}_{\mathrm{t}+1}$ to X_{0}.

