- Markov chains are pretty easy!
- But sometimes they aren't realistic...
- What if we can't directly know the states of the model, but we can see some indirect evidence resulting from the states?

Weather

- Regular Markov chain
- Each day the weather is rainy or sunny.
$-P\left(X_{t}=\right.$ rain $\mid X_{t-1}=$ rain $)=0.7$
$-P\left(X_{t}=\right.$ sunny $\mid X_{t-1}=$ sunny $)=0.9$
- Twist:
- Suppose you work in an office with no windows. All you can observe is weather your colleague brings their umbrella to work.

Hidden Markov Models

- The X's are the state variables (never directly observed).
- The E's are evidence variables.

Common real-world uses

- Speech processing:
- Observations are sounds, states are words.
- Localization:
- Observations are inputs from video cameras or microphones, state is the actual location.
- Video processing (example):
- Extracting a human walking from each video frame. Observations are the frames, states are the positions of the legs.

Hidden Markov Models

- $P\left(X_{t} \mid X_{t-1}, X_{t-2}, X_{t-3}, \ldots\right)=P\left(X_{t} \mid X_{t-1}\right)$
- $P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{1} \mid X_{0}\right)$
- $P\left(E_{t} \mid X_{0: t}, E_{0: t-1}\right)=P\left(E_{t} \mid X_{t}\right)$
- $P\left(E_{t} \mid X_{t}\right)=P\left(E_{1} \mid X_{1}\right)$

Hidden Markov Models

- What is $P\left(X_{0: t}, E_{1: t}\right)$?

$$
P\left(X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)
$$

Common questions

- Filtering: Given a sequence of observations, what is the most probable current state?
- Compute $P\left(X_{t} \mid e_{1: t}\right)$
- Prediction: Given a sequence of observations, what is the most probable future state?
- Compute $P\left(X_{t+k} \mid e_{1: t}\right)$ for some $k>0$
- Smoothing: Given a sequence of observations, what is the most probable past state?
- Compute $P\left(X_{k} \mid e_{1: t}\right)$ for some $k<t$

Common questions

- Most likely explanation: Given a sequence of observations, what is the most probable sequence of states?
- Compute $\underset{x_{1: t}}{\operatorname{argmax}} P\left(x_{1: t} \mid e_{1: t}\right)$
- Learning: How can we estimate the transition and sensor models from real-world data? (Future machine learning class?)

Hidden Markov Models

- $P\left(R_{t}=\right.$ yes $\mid R_{t-1}=$ yes $)=0.7$
$P\left(R_{t}=\right.$ yes $\left.\mid R_{t-1}=n o\right)=0.1$
- $P\left(U_{t}=\right.$ yes $\left.\mid R_{t}=y e s\right)=0.9$

$$
P\left(U_{t}=\text { yes } \mid R_{t}=n o\right)=0.2
$$

Filtering

- Filtering is concerned with finding the most probable "current" state from a sequence of evidence.
- Let's compute this.

Recall the "mini-forward algorithm"

For Markov chains:
$P\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t}\right)$
with matrices: $v_{t+1}=v_{t} * T$, with $v_{0}=P\left(X_{0}\right)$
For HMM's:
$P\left(X_{t+1} \mid e_{1: t+1}\right)=$
$\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

Forward algorithm

- Today is Day 2, and I've been pulling allnighters for two days!
- My colleague brought their umbrella on days 1 and 2.
- What is the probability it is raining today? - that is, find $P\left(X_{t} \mid e_{1: t}\right) \quad[$ filtering]
- Assume initial distribution of rain/not-rain for Day 0 is 50-50.

Matrices to the rescue!

- Define a transition matrix T as normal.
- Define a sequence of observation matrices O_{1} through O_{t}.
- Each O matrix is a diagonal matrix with the entries corresponding to observation at time t given each state.

$$
f_{1: t+1}=\alpha f_{1: t} \cdot T \cdot O_{t+1}
$$

where each f is a row vector containing the probability distribution at timestep t.
$f 1: 0=[0.5,0.5] \quad f 1: 1=[0.75,0.25] \quad f 1: 2=[0.846,0.154]$

$\mathrm{f} 1: 0=\mathrm{P}(\mathrm{RO})=[0.5,0.5]$
$\mathrm{f} 1: 1=\mathrm{P}(\mathrm{R} 1 \mid \mathrm{u} 1)=\boldsymbol{\alpha} * \mathrm{f} 1: 0$ * $\mathrm{T} * \mathrm{O} 1=\boldsymbol{\alpha}[0.36,0.12]=[0.75,0.25]$
$f 1: 2=P(R 2 \mid u 1, u 2)=\boldsymbol{\alpha} * f 1: 1 * T * 02=\boldsymbol{\alpha}[0.495,0.09]=[.846, .154]$

Forward algorithm

- Note that the forward algorithm only gives you the probability of X_{t} taking into account evidence at times 1 through t.
- In other words, say you calculate $P\left(X_{1} \mid e_{1}\right)$ using the forward algorithm, then you calculate $P\left(X_{2} \mid e_{1}, e_{2}\right)$.
- Knowing e2 changes your calculation of X 1 .
- That is, $P\left(X_{1} \mid e_{1}\right)!=P\left(X_{1} \mid e_{1}, e_{2}\right)$

