- Markov chains are pretty easy!
- But sometimes they aren't realistic...

 What if we can't directly know the states of the model, but we can see some indirect evidence resulting from the states?

Weather

- Regular Markov chain
 - Each day the weather is rainy or sunny.

$$- P(X_t = rain | X_{t-1} = rain) = 0.7$$

$$-P(X_t = sunny | X_{t-1} = sunny) = 0.9$$

- Twist:
 - Suppose you work in an office with no windows.
 All you can observe is weather your colleague brings their umbrella to work.

- The X's are the state variables (never directly observed).
- The E's are evidence variables.

Common real-world uses

- Speech processing:
 - Observations are sounds, states are words.
- Localization:
 - Observations are inputs from video cameras or microphones, state is the actual location.
- Video processing (example):
 - Extracting a human walking from each video frame. Observations are the frames, states are the positions of the legs.

Hidden Markov Models

- $P(X_t | X_{t-1}, X_{t-2}, X_{t-3}, ...) = P(X_t | X_{t-1})$
- $P(X_t | X_{t-1}) = P(X_1 | X_0)$
- $P(E_t | X_{0:t}, E_{0:t-1}) = P(E_t | X_t)$
- $P(E_t | X_t) = P(E_1 | X_1)$

Hidden Markov Models

• What is P(X_{0:t}, E_{1:t})?

$$P(X_0) \prod_{i=1}^{t} P(X_i \mid X_{i-1}) P(E_i \mid X_i)$$

Common questions

• Filtering: Given a sequence of observations, what is the most probable *current* state?

- Compute $P(X_t | e_{1:t})$

• **Prediction**: Given a sequence of observations, what is the most probable *future* state?

- Compute $P(X_{t+k} | e_{1:t})$ for some k > 0

 Smoothing: Given a sequence of observations, what is the most probable *past* state?

- Compute $P(X_k | e_{1:t})$ for some k < t

Common questions

 Most likely explanation: Given a sequence of observations, what is the most probable sequence of states?

- Compute
$$\underset{x_{1:t}}{\operatorname{argmax}} P(x_{1:t} \mid e_{1:t})$$

 Learning: How can we estimate the transition and sensor models from real-world data? (Future machine learning class?)

Hidden Markov Models

- $P(R_t = yes | R_{t-1} = yes) = 0.7$ $P(R_t = yes | R_{t-1} = no) = 0.1$
- P(U_t = yes | R_t = yes) = 0.9
 P(U_t = yes | R_t = no) = 0.2

Filtering

- Filtering is concerned with finding the most probable "current" state from a sequence of evidence.
- Let's compute this.

Recall the "mini-forward algorithm"

For Markov chains:

$$P(X_{t+1}) = \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t)$$

with matrices: $v_{t+1} = v_t * T$, with $v_0 = P(X_0)$
For HMM's:

$$P(X_{t+1} \mid e_{1:t+1}) = \alpha P(e_{t+1} \mid X_{t+1}) \sum_{x_t} P(X_{t+1} \mid x_t) P(x_t \mid e_{1:t})$$

Forward algorithm

- Today is Day 2, and I've been pulling allnighters for two days!
- My colleague brought their umbrella on days 1 and 2.
- What is the probability it is raining today? — that is, find $P(X_t | e_{1:t})$ [*filtering*]
- Assume initial distribution of rain/not-rain for Day 0 is 50-50.

Matrices to the rescue!

- Define a transition matrix T as normal.
- Define a sequence of observation matrices O₁ through O_t.
- Each O matrix is a diagonal matrix with the entries corresponding to observation at time t given each state.

$$f_{1:t+1} = \alpha f_{1:t} \cdot T \cdot O_{t+1}$$

where each f is a row vector containing the probability distribution at timestep t.

f1:0=[0.5, 0.5] f1:1=[0.75, 0.25] f1:2=[0.846, 0.154]

f1:0 = P(R0) = [0.5, 0.5] f1:1 = P(R1 | u1) = α * f1:0 * T * O1 = α [0.36, 0.12] = [0.75, 0.25] f1:2 = P(R2 | u1, u2) = α * f1:1 * T * O2 = α [0.495, 0.09] = [.846, .154]

Forward algorithm

- Note that the forward algorithm only gives you the probability of X_t taking into account evidence at times 1 through t.
- In other words, say you calculate P(X₁ | e₁) using the forward algorithm, then you calculate P(X₂ | e₁, e₂).
 - Knowing e2 changes your calculation of X1.
 - That is, $P(X_1 | e_1) != P(X_1 | e_1, e_2)$