* Markov chains are pretty easy!
 But sometimes they aren't realistic...

 What if we can't directly know the states of
the model, but we can see some indirect
evidence resulting from the states?



Weather

* Regular Markov chain
— Each day the weather is rainy or sunny.
— P(X,=rain | X.; =rain) =0.7
— P(X; = sunny| X.; =sunny) =0.9

* Twist:

— Suppose you work in an office with no windows.
All you can observe is weather your colleague

brings their umbrella to work.



Hidden Markov Models

ne X's are the state variables (never directly
oserved).

ne E's are evidence variables.



Common real-world uses

e Speech processing:
— Observations are sounds, states are words.

 |Localization:

— Observations are inputs from video cameras or
microphones, state is the actual location.

* Video processing (example):

— Extracting a human walking from each video
frame. Observations are the frames, states are
the positions of the legs.



Hidden Markov Models

* P(X;
* P(X;
* P(E,
* P(E,

Xe-1r Xer Xezs ) = P(X | Xiq)
Xe1) = P(X1 | Xo)

Xotr Eoit-1) = P(E¢ | X¢)

Xe) = P(Eq | Xy)



Hidden Markov Models

ToaE

* Whatis P(Xy., E1.1)?

P(X,) HP(XZ- ' X,_1)P(E; | X;)



Common questions

* Filtering: Given a sequence of observations,
what is the most probable current state?

— Compute P(X; | e1+)

* Prediction: Given a sequence of observations,
what is the most probable future state?
— Compute P(X,, | €1+4) forsome k>0

* Smoothing: Given a sequence of observations,
what is the most probable past state?

— Compute P(X, | e,) forsome k <t



Common questions

* Most likely explanation: Given a sequence of
observations, what is the most probable

sequence of states?

L1:t

e Learning: How can we estimate the transition
and sensor models from real-world data?
(Future machine learning class?)
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Hidden Markov Models

i =ves | Ry, =yes)=0.7
Ri=ves | R.;=n0)=0.1
U, =ves | R,=yes)=0.9
J,=ves | Rk=no)=0.2




Filtering

* Filtering is concerned with finding the most
probable "current" state from a sequence of

evidence.
e Let's compute this.



Recall the "mini-forward algorithm"

For Markov chains:

P(X¢11) ZP (X1 | @) P(a¢)

with matrices: vt+1 =v, * T, with vy = P(X,)
For HMM's:

P(Xi41 | e1:441) =
aP(eri1 | Xev1) D P(Xeyr | @) P(a | er)

Lt



Forward algorithm

Today is Day 2, and I've been pulling all-
nighters for two days!

My colleague brought their umbrella on days
1 and 2.

What is the probability it is raining today?
—thatis, find P(X; | ey) [filtering]

Assume initial distribution of rain/not-rain for
Day 0 is 50-50.



Matrices to the rescue!

e Define a transition matrix T as normal.

* Define a sequence of observation matrices O,
through O..

* Each O matrix is a diagonal matrix with the

entries corresponding to observation at time t
given each state.

Jii+1 = af1: - T - O
where each f is a row vector containing the
probability distribution at timestep t.



f1:0=[0.5, 0.5] f1:1=[0.75, 0.25] f1:2=[0.846, 0.154]

RO R > [0.1, 0.9]

01 = [0.9, 0.0]
[0.9, 0.2]
02 = [0.9, 0.0]
[0.0, 0.2]

f1.0 = P(RO) = [0.5, 0.5]
fl:1=P(R1 | ul)=a *f1:0* T * O1 = a[0.36, 0.12] = [0.75, 0.25]
fl1:2=P(R2 | ul,u2)=a *f1:1 * T * 02 = a[0.495, 0.09] = [.846, .154]



Forward algorithm

* Note that the forward algorithm only gives

you the probability of X, taking into account
evidence at times 1 through t.

* In other words, say you calculate P(X; | e,)
using the forward algorithm, then you
calculate P(X, | e4, €,).

— Knowing e2 changes your calculation of X1.
— That is, P(X; | ;) I=P(X; | e, €5)



