
• Markov chains are pretty easy!

• But sometimes they aren't realistic…

• What if we can't directly know the states of 
the model, but we can see some indirect 
evidence resulting from the states?



Weather

• Regular Markov chain
– Each day the weather is rainy or sunny.  
– P(Xt = rain | Xt-1 = rain) = 0.7
– P(Xt = sunny| Xt-1 = sunny) = 0.9

• Twist:
– Suppose you work in an office with no windows.  

All you can observe is weather your colleague 
brings their umbrella to work.



Hidden Markov Models

• The X's are the state variables (never directly 
observed).

• The E's are evidence variables.

X0 X1 X2 X3

E1 E2 E3



Common real-world uses

• Speech processing:
– Observations are sounds, states are words.

• Localization:
– Observations are inputs from video cameras or 

microphones, state is the actual location.
• Video processing (example):
– Extracting a human walking from each video 

frame.  Observations are the frames, states are 
the positions of the legs.



Hidden Markov Models

• P(Xt | Xt-1, Xt-2, Xt-3, …) = P(Xt | Xt-1)

• P(Xt | Xt-1) = P(X1 | X0)

• P(Et | X0:t, E0:t-1) = P(Et | Xt)

• P(Et | Xt) = P(E1 | X1)

X0 X1 X2 X3

E1 E2 E3



Hidden Markov Models

• What is P(X0:t, E1:t)?

X0 X1 X2 X3

E1 E2 E3

P (X0)
tY

i=1

P (Xi | Xi�1)P (Ei | Xi)



Common questions
• Filtering: Given a sequence of observations, 

what is the most probable current state?
– Compute P(Xt | e1:t)

• Prediction: Given a sequence of observations, 
what is the most probable future state?
– Compute P(Xt+k | e1:t) for some k > 0

• Smoothing: Given a sequence of observations, 
what is the most probable past state?
– Compute P(Xk | e1:t) for some k < t



Common questions
• Most likely explanation: Given a sequence of 

observations, what is the most probable 
sequence of states?
– Compute 

• Learning: How can we estimate the transition 
and sensor models from real-world data? 
(Future machine learning class?)

argmax
x1:t

P (x1:t | e1:t)



Hidden Markov Models

• P(Rt = yes | Rt-1 = yes) = 0.7
P(Rt = yes | Rt-1 = no) = 0.1

• P(Ut = yes | Rt = yes) = 0.9
P(Ut = yes | Rt = no) = 0.2

R0 R1 R2 R3

U1 U2 U3



Filtering

• Filtering is concerned with finding the most 
probable "current" state from a sequence of 
evidence.

• Let's compute this.



Recall the "mini-forward algorithm"
For Markov chains:

with matrices: vt+1 = vt * T, with v0 = P(X0)

For HMM's:

P (Xt+1) =
X

xt

P (Xt+1 | xt)P (xt)

P (Xt+1 | e1:t+1) =

↵P (et+1 | Xt+1)
X

xt

P (Xt+1 | xt)P (xt | e1:t)



Forward algorithm

• Today is Day 2, and I've been pulling all-
nighters for two days!

• My colleague brought their umbrella on days 
1 and 2.

• What is the probability it is raining today?
– that is, find P(Xt | e1:t)    [filtering]

• Assume initial distribution of rain/not-rain for 
Day 0 is 50-50.



Matrices to the rescue!
• Define a transition matrix T as normal.
• Define a sequence of observation matrices O1

through Ot.
• Each O matrix is a diagonal matrix with the 

entries corresponding to observation at time t 
given each state.

where each f is a row vector containing the 
probability distribution at timestep t.

f1:t+1 = ↵f1:t · T ·Ot+1



f1:0 = P(R0) = [0.5, 0.5]
f1:1 = P(R1 | u1) = ! * f1:0 * T * O1 = ![0.36, 0.12] = [0.75, 0.25]
f1:2 = P(R2 | u1, u2) = ! * f1:1 * T * O2 = ![0.495, 0.09] = [.846, .154]

T  = [0.7, 0.3]
[0.1, 0.9]

O1 = [0.9, 0.0]
[0.0, 0.2]

O2 = [0.9, 0.0]
[0.0, 0.2]

f1:0=[0.5, 0.5] f1:1=[0.75, 0.25]

R0 R1 R2

U1 U2

f1:2=[0.846, 0.154]



Forward algorithm

• Note that the forward algorithm only gives 
you the probability of Xt taking into account
evidence at times 1 through t.

• In other words, say you calculate P(X1 | e1) 
using the forward algorithm, then you 
calculate P(X2 | e1, e2).  
– Knowing e2 changes your calculation of X1.
– That is, P(X1 | e1) != P(X1 | e1, e2)


