Markov Chains

Toolbox

- Search: uninformed/heuristic
- Adversarial search
- Probability
- Bayes nets
- Naive Bayes classifiers
- Statistical inference

Reasoning over time

- In a Bayes net, each random variable (node) takes on one specific value.
- Good for modeling static situations.
- What if we need to model a situation that is changing over time?

Example: Comcast

- In 2004 and 2007, Comcast had the worst customer satisfaction rating of any company or gov't agency, including the IRS.
- I have cable internet service from Comcast, and sometimes my router goes down. If the router is online, it will be online the next day with prob=0.8. If it's offline, it will be offline the next day with prob=0.4.
- How do we model the probability that my router will be online/offline tomorrow? In 2 days?

Example: Waiting in line

- You go to the Apple Store to buy the latest iPhone. Every minute, the first person in line is served with prob=0.5.
- Every minute, a new person joins the line with probability

1 if the line length=0
$2 / 3$ if the line length=1
$1 / 3$ if the line length=2
0 if the line length=3

- How do we model what the line will look like in 1 minute? In 5 minutes?

Markov Chains

- A Markov chain is a type of Bayes net with a potentially infinite number of variables (nodes).
- Each variable describes the state of the system at a given point in time (t).

Markov Chains

- Markov property:

$$
P\left(X_{t} \mid X_{t-1}, X_{t-2}, X_{t-3}, \ldots\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- Probabilities for each variable are identical:

$$
P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{1} \mid X_{0}\right)
$$

Markov Chains

- Since these are just Bayes nets, we can use standard Bayes net ideas.
- Shortcut notation: $X_{i: j}$ will refer to all variables X_{i} through X_{j}, inclusive.
- Common questions:
- What is the probability of a specific event happening in the future?
- What is the probability of a specific sequence of events happening in the future?

An alternate formulation

- We have a set of states, S.
- The Markov chain is always in exactly one state at any given time t .
- The chain transitions to a new state at each time t+1 based only on the current state at time t.

$$
p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

- Chain must specify $p_{i j}$ for all i and j, and starting probabilities for $P\left(X_{0}=j\right)$ for all j.

Two different representations

- As a Bayes net:

- As a state transition diagram (similar to a DFA/NFA):

Formulate Comcast in both ways

- I have cable internet service from Comcast, and sometimes my router goes down. If the router is online, it will be online the next day with prob=0.8. If it's offline, it will be offline the next day with prob=0.4.
- Let's draw this situation in both ways.
- Assume on day 0 , probability of router being down is 0.5 .

Comcast

- What is the probability my router is offline for 3 days in a row (days 0,1 , and 2)?
- $\mathrm{P}\left(\mathrm{X}_{2}=\right.$ off, $\mathrm{X}_{1}=$ off, $\mathrm{X}_{0}=$ off)?
- $\mathrm{P}\left(\mathrm{X}_{2}=\right.$ off $\mid \mathrm{X}_{0}=$ off, $\mathrm{X}_{1}=$ off $) * P\left(\mathrm{X}_{0}=\right.$ off, $X_{1}=$ off $) \quad$ [mult rule]
- $P\left(X_{2}=\right.$ off $\mid X_{0}=$ off, $X_{1}=$ off $) * P\left(X_{1}=\right.$ off $\mid X_{0}=$ off $) * P\left(X_{0}=\right.$ off $)$
$-P\left(X_{2}=\right.$ off $\mid X_{1}=$ off $) * P\left(X_{1}=\right.$ off $\mid X_{0}=$ off $) * P\left(X_{0}=\right.$ off $)$
$-p_{\text {off, off }} * p_{\text {off, off }} * P\left(X_{0}=o f f\right)$

$$
P\left(x_{0: t}\right)=P\left(x_{0}\right) \prod_{i=1}^{t} P\left(x_{i} \mid x_{i-1}\right)
$$

More Comcast

- Suppose I don't know if my router is online right now (day 0). What is the prob it is offline tomorrow?
$-P\left(X_{1}=o f f\right)$
$-P\left(X_{1}=\right.$ off $)=P\left(X_{1}=\right.$ off,$X_{0}=$ on $)+P\left(X_{1}=\right.$ off,$X_{0}=$ off $)$
$-P\left(X_{1}=\right.$ off $)=P\left(X_{1}=\right.$ off $\mid X_{0}=$ on $) * P\left(X_{0}=\right.$ on $)$
$+P\left(X_{1}=\right.$ off $\mid X_{0}=$ off $) * P\left(X_{0}=\right.$ off $)$
$P\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t}\right)$

More Comcast

- Suppose I don't know if my router is online right now (day 0). What is the prob it is offline the day after tomorrow?
$-P\left(X_{2}=o f f\right)$
$-P\left(X_{2}=\right.$ off $)=P\left(X_{2}=\right.$ off, $X_{1}=$ on $)+P\left(X_{2}=\right.$ off, $X_{1}=$ off $)$
$-P\left(X_{2}=\right.$ off $)=P\left(X_{2}=\right.$ off $\mid X_{1}=$ on $) * P\left(X_{1}=o n\right)$
$+P\left(X_{2}=\right.$ off $\mid X_{1}=$ off $) * P\left(X_{1}=\right.$ off $)$
$P\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t}\right)$

Markov chains with matrices

- Define a transition matrix for the chain:

$$
T=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.6 & 0.4
\end{array}\right]
$$

- Each row of the matrix represents the transition probabilities leaving a state.
- Let $\mathrm{v}_{\mathrm{t}}=\mathrm{a}$ row vector representing the probability that the chain is in each state at time t .
- $v_{t}=v_{t-1} * T$

Formulate this matrix

- If the stock market is up one day, then it will be up the next day with prob=0.7.
- If it's down one day, it will be down the next day with prob=0.4.

Mini-forward algorithm

- Suppose we are given the value of X_{t} or a probability distribution over X_{t} and we want to predict $\mathrm{X}_{\mathrm{t}+1}, \mathrm{X}_{\mathrm{t}+2}, \mathrm{X}_{\mathrm{t}+3} \cdots$
- Make row vector $v_{t}=P\left(X_{t}\right)$
- Note that v_{t} can be something like [1, 0] if you know the true value of X_{t}, or it can be a distribution over values.
- $v_{t+1}=v_{t}^{*} T$
- $\mathrm{v}_{\mathrm{t}+2}=\mathrm{v}_{\mathrm{t}+1} * \mathrm{~T}=\mathrm{v}_{\mathrm{t}} * \mathrm{~T} * \mathrm{~T}=\mathrm{v}_{\mathrm{t}} * \mathrm{~T}^{2}$
- $v_{t+3}=v_{t} * T^{3}$
- $v_{t+n}=v_{t} * T^{n}$

Back to the Apple Store...

- You go to the Apple Store to buy the latest iPhone.
- Every minute, a new person joins the line with probability

1 if the line length=0
$2 / 3$ if the line length=1
$1 / 3$ if the line length=2
0 if the line length=3

- Immediately after (in the same minute), the first person is helped with prob $=0.5$
- Model this as a Markov chain, assuming the line starts empty. Draw the state transition diagram.
- What is T ? What is v_{0} ?

