Markov chain formulas:

Basic rules of Markov chains:

- $P\left(X_{t} \mid X_{t-1}, X_{t-2}, X_{t-3}, \ldots\right)=P\left(X_{t} \mid X_{t-1}\right)$ (what happens at time t only depends on $t-1$)
- $P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{1} \mid X_{0}\right) \quad$ (transition probability distributions are all identical)

Probability of a sequence of states from beginning: $P\left(x_{0: t}\right)=P\left(x_{0}\right) \prod_{i=1}^{t} P\left(x_{i} \mid x_{i-1}\right)$
Probability of the next state (Mini-forward algorithm): $P\left(x_{t+1}\right)=\sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t}\right)$
In vector notation: $P\left(X_{t+1}\right)=v_{t+1}=v_{t} \cdot T$
$P\left(X_{t+n}\right)=v_{t+n}=v_{t} \cdot T^{n}$
where v_{t} is a row vector containing the probability distribution of the Markov chain being in each state at time t.
$v_{0}=P\left(X_{0}\right)=$ initial probability distribution of the Markov chain.

HMM (Hidden Markov model) formulas:

Basic rules of HMMs:

- Same two rules as for Markov chains, plus:
- $P\left(E_{t} \mid X_{0: t}, E_{0: t-1}\right)=P\left(E_{t} \mid X_{t}\right)$ (evidence at time t depends only on the state at time t)
- $P\left(E_{t} \mid X_{t}\right)=P\left(E_{1} \mid X_{1}\right) \quad$ (evidence probability distributions are all identical)

Forward algorithm: Probability of the next state given all evidence up to this point from beginning:
$P\left(x_{t+1} \mid e_{1: t+1}\right)=\alpha \cdot P\left(e_{t+1} \mid x_{t+1}\right) \sum_{x_{t}} P\left(x_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$
In vector notation: $P\left(X_{t+1} \mid e_{1: t}\right)=f_{1: t+1}=\alpha \cdot f_{1: t} \cdot T \cdot O_{t+1}$

$$
P\left(X_{t+1} \mid e_{1: t}\right)=f_{t+1}=\alpha \cdot f_{t} \cdot T \cdot O_{t+1}
$$

[Assume evidence begins from timestep 1 if not specified.]
where $f_{t_{1}: t_{2}}$ is a row vector containing the probability distribution of the Markov chain being in each state at time t_{2}, given all the evidence between times t_{1} and t_{2}. If $t_{1}=1$, we can drop it in the notation and just use f_{t}.
$f_{1: 0}=f_{0}=P\left(X_{0}\right)=$ initial probability distribution of the HMM.
Smoothing (forward-backward algorithm): Probability of a past state given evidence up to the present:

$$
\begin{array}{rlr}
P\left(X_{k} \mid e_{1: t}\right) & =P\left(X_{k} \mid e_{1: k}, e_{k+1: t}\right) & \\
& =\alpha \cdot P\left(X_{k} \mid e_{1: k}\right) P\left(e_{k+1: t} \mid X_{k}, e_{1: k}\right) & \text { (Bayes' rule) } \\
& =\alpha \cdot P\left(X_{k} \mid e_{1: k}\right) P\left(e_{k+1: t} \mid X_{k}\right) & \\
& =\alpha \cdot f_{1: k} \times b_{k+1: t} & \text { (conditional indep) }
\end{array}
$$

where the f-vectors are as above and the b-vectors are $b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t}$ with $b_{t+1: t}=\mathbf{1}$ (a column vector of all 1's).
To use the algorithm to compute $P\left(X_{k} \mid e_{1: t}\right)$:

- Compute the forward probabilities (f-vectors) from f_{0} up to f_{t}
- Compute the backward probabilities (b-vectors) from $b_{t+1: t}$ back to $b_{k+1: t}$
- Multiply pairs of f - and b-vectors (using element-by-element multiplication within each vector).

