Markov chain formulas:

Basic rules of Markov chains:

- $P(X_t \mid X_{t-1}, X_{t-2}, X_{t-3}, \ldots) = P(X_t \mid X_{t-1})$ (what happens at time t only depends on t-1)
- $P(X_t \mid X_{t-1}) = P(X_1 \mid X_0)$ (transition probability distributions are all identical)

Probability of a sequence of states from beginning: $P(x_{0:t}) = P(x_0) \prod_{i=1}^{t} P(x_i \mid x_{i-1})$

Probability of the next state (Mini-forward algorithm): $P(x_{t+1}) = \sum_{x_t} P(x_{t+1} \mid x_t) P(x_t)$

In vector notation: $P(X_{t+1}) = v_{t+1} = v_t \cdot T$

 $P(X_{t+n}) = v_{t+n} = v_t \cdot T^n$

where v_t is a row vector containing the probability distribution of the Markov chain being in each state at time t.

 $v_0 = P(X_0) =$ initial probability distribution of the Markov chain.

HMM (Hidden Markov model) formulas:

Basic rules of HMMs:

- Same two rules as for Markov chains, plus:
- $P(E_t \mid X_{0:t}, E_{0:t-1}) = P(E_t \mid X_t)$ (evidence at time t depends only on the state at time t)
- $P(E_t \mid X_t) = P(E_1 \mid X_1)$ (evidence probability distributions are all identical)

Forward algorithm: Probability of the next state given all evidence up to this point from beginning:

$$P(x_{t+1} \mid e_{1:t+1}) = \alpha \cdot P(e_{t+1} \mid x_{t+1}) \sum_{x_t} P(x_{t+1} \mid x_t) P(x_t \mid e_{1:t})$$

In vector notation: $P(X_{t+1} | e_{1:t}) = f_{1:t+1} = \alpha \cdot f_{1:t} \cdot T \cdot O_{t+1}$

 $P(X_{t+1} | e_{1:t}) = f_{t+1} = \alpha \cdot f_t \cdot T \cdot O_{t+1}$

[Assume evidence begins from timestep 1 if not specified.]

where $f_{t_1:t_2}$ is a row vector containing the probability distribution of the Markov chain being in each state at time t_2 , given all the evidence between times t_1 and t_2 . If $t_1 = 1$, we can drop it in the notation and just use f_t .

 $f_{1:0} = f_0 = P(X_0) =$ initial probability distribution of the HMM.

Smoothing (forward-backward algorithm): Probability of a *past* state given evidence up to the present:

$$P(X_k \mid e_{1:t}) = P(X_k \mid e_{1:k}, e_{k+1:t})$$

$$= \alpha \cdot P(X_k \mid e_{1:k})P(e_{k+1:t} \mid X_k, e_{1:k})$$

$$= \alpha \cdot P(X_k \mid e_{1:k})P(e_{k+1:t} \mid X_k)$$

$$= \alpha \cdot f_{1:k} \times b_{k+1:t}$$
(Bayes' rule)
(conditional indep)
(conditional indep)
(x is pointwise multiplication of vectors)

where the *f*-vectors are as above and the *b*-vectors are $b_{k:t} = T \cdot O_k \cdot b_{k+1:t}$ with $b_{t+1:t} = \mathbf{1}$ (a column vector of all 1's).

To use the algorithm to compute $P(X_k \mid e_{1:t})$:

- Compute the forward probabilities (*f*-vectors) from f_0 up to f_t
- Compute the backward probabilities (b-vectors) from $b_{t+1:t}$ back to $b_{k+1:t}$
- Multiply pairs of *f* and *b*-vectors (using element-by-element multiplication within each vector).