
Real-world use of alpha-beta

• (Regular) minimax is normally run as a
preprocessing step to find the optimal move
from every possible situation.

• Minimax with alpha-beta can be run as a
preprocessing step, but might have to re-run
during play if a non-optimal move is chosen.

• Save states somewhere so if we re-encounter
them, we don't have to recalculate everything.

Real-world use of alpha-beta

• States get repeated in the game tree because
of transpositions.

• When you discover a best move in minimax or
alpha-beta, save it in a lookup table (probably
a hash table).
– Called a transposition table.

Real-world use of alpha-beta

• In the real-world, alpha-beta does not "pre-
generate" the game tree.
– The whole point of alpha-beta is to not have to

generate all the nodes.

• The DFS part of minimax/alpha-beta is what
generates the tree.

Summary so far

• Minimax: Find the best move for each player,
assuming the other player plays perfectly.
– Based on DFS; searches the whole game tree.
– Usually used as a preprocessing step (too slow for

real time).
• Alpha-beta: Always gives same result as

minimax, but prunes sub-optimal branches.
– Can be used to preprocess game tree, but sub-

optimal moves will necessitate rerunning.
– Can be used in real time, but often still too slow.

Improving on alpha-beta

• Alpha-beta still must search down to terminal
nodes sometimes.
– (and minimax has to search to terminal nodes all

the time!)

• Improvement idea: can we get away with only
looking a few moves ahead?

Heuristic minimax algorithm

h-minimax(s, d) =
eval(s, MAX) if is-cutoff(s, d)
maxa in actions(s) h-minimax(result(s, a), d+1) if to-move(s)=MAX
mina in actions(s) h-minimax(result(s, a), d+1) if to-move(s)=MIN

minimax(s) =
utility(s, MAX) if is-terminal(s)
maxa in actions(s) minimax(result(s, a)) if to-move(s)=MAX
mina in actions(s) minimax(result(s, a)) if to-move(s)=MIN

REGULAR MINIMAX

result(s, a) means the new state generated
by taking action a in state s.

is-cutoff(s, d) is a boolean test that determines whether
we should stop the search and evaluate our position.

HEURISTIC MINIMAX

How to create a good evaluation
function?

• Trying to judge the probability of winning from
a given state.

• Typically use features: simple characteristics of
the game that correlate well with the
probability of winning.

One last point
O O O

X X X

O O O

X X X X

O O O

X X X X

O O O

X X X O X

O O O O

X X X X

O O O O
X X X X X

utility=1

etc…

MIN

MAX

MAX

utility=1

