* Problem: minimax takes too long.

* Solution: improve algorithm to ignore parts of
the tree that will definitely not be used
(assuming both players play optimally).

MAX

MIN

12

MAX

MIN

* |dea: for each node, keep track of the range of
possible values that minimax could produce

for that node.

* |f we ever find ourselves at a node that we
know will never be selected during (optimal)
game play, we can "prune" it (end the
recursion on this part of the tree).

* Enhanced version of minimax is called
minimax with alpha-beta pruning.

Alpha-beta pruning

e Recall that minimax is a variant of depth-first
search. During the algorithm, we will only
consider nodes along the path from the root
node to the current node.

At each node in the search, we will maintain
two variables:

— alpha (a) = highest numeric value we’ve found so
far on this path (best move for MAX)

— beta (B) = lowest numeric value we’ve found so far
on this path (best choice for MIN)

Alpha-beta pruning

* Alpha and beta are inherited from parent
nodes as we recursively descend the tree.

e |f at a MAX node, we see a child node that has
a value >= than beta, short-circuit.

e If at a MIN node, we see a child node that has
a value <= than alpha, short-circuit.

function ALPHA-BETA-SEARCH(game, state) returns an action
player «— game. TO-MOVE(state)
value, move <~ MAX-VALUE(game, state, —o0,+00)
return move

function MAX-VALUE(game, state, o,) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
V¢ —00
for each a in game.ACTIONS(state) do
v2, a2 < MIN-VALUE(game, game.RESULT(state, a), o, [3)
if v2 > v then
v, move < v2, a
a+— MAX(a, v)
if v > [then return v, move
return v, move

function MIN-VALUE(game, state, o, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game. UTILITY(state, player), null
V¢=1 00
for each a in game.ACTIONS(state) do
v2, a2 < MAX-VALUE(game, game.RESULT(state, a), o, [3)
if v2 < v then
v, move <+ v2, a
B+ MIN(3, v)
if v < « then return v, move
return v, move

MAX

MIN

12

* The results of alpha-beta depend on the order

in which moves are considered among the
children of a node.

* |f possible, consider better moves first!

function ALPHA-BETA-SEARCH(game, state) returns an action
player «— game. TO-MOVE(state)
value, move <~ MAX-VALUE(game, state, —o0,+00)
return move

function MAX-VALUE(game, state, o,) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game.UTILITY(state, player), null
V¢ —00
for each a in game.ACTIONS(state) do
v2, a2 < MIN-VALUE(game, game.RESULT(state, a), o, [3)
if v2 > v then
v, move < v2, a
a+— MAX(a, v)
if v > [then return v, move
return v, move

function MIN-VALUE(game, state, o, 3) returns a (utility, move) pair
if game.IS-TERMINAL(state) then return game. UTILITY(state, player), null
V¢=1 00
for each a in game.ACTIONS(state) do
v2, a2 < MAX-VALUE(game, game.RESULT(state, a), o, [3)
if v2 < v then
v, move <+ v2, a
B+ MIN(3, v)
if v < « then return v, move
return v, move

