
Adversarial Search

Toolbox so far

• Uninformed search
– BFS, DFS, uniform cost search

• Heuristic search
– A*

Common environmental factors:
static, discrete, fully observable,
deterministic actions.
Also: single agent, non-episodic.

There's More!

• Add a second agent, but
not controlled by us.

• Assume this agent is our adversary.
• Environment (for now)
– Still static
– Still discrete
– Still fully observable (for now)
– Still deterministic (for now)

Games!

• Deterministic, turn-taking, two-player, zero-
sum games of perfect information.

2007

Adversarial search

• Still search!
– But another agent will alternate actions with us.

• Main new concept:
– Two players are called MAX and MIN.
– Only works for zero-sum games.

• Strictly competitive (no cooperation).
• What is good for me is equally bad for my opponent (in

regards to winning and losing).

–Most “normal” 2-player games are zero-sum.

• Most all of our concepts from state-space search
transfer here.

• S0: initial state
• TO-MOVE(s): Defines who makes the next move

at a state.
• ACTIONS(s): Returns the set of legal moves in a

state.
• RESULT(s, a): Returns what state you go into

(transition model)
• IS-TERMINAL(s): Returns true if s is a terminal

state.
• UTILITY(s, p): Numeric value of a terminal state s

for player p.

Game Tree

3 12 8 2 4 6 14 5 2

MAX

MIN

Minimax algorithm

• Select the best move for you, assuming your
opponent is selecting the best move for
themselves.

• Works like DFS.

Minimax algorithm
(assuming it is MAX's turn)

minimax(s) =
utility(s, MAX) if IS-TERMINAL(s)
maxa in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MAX
mina in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MIN

result(s, a) means the new state generated
by taking action a in state s.

3 12 8 2 4 6 14 5 2

MAX

MIN

minimax(s) =
utility(s, MAX) if IS-TERMINAL(s)
maxa in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MAX
mina in actions(s) minimax(result(s, a)) if TO-MOVE(s)=MIN

Properties of minimax

• Complete?
– Yes (assuming tree is finite)

• Optimal?
– Yes (assuming opponent is also optimal)

• Time complexity: O(bm)
• Space complexity: O(bm) (like DFS)
• But for chess, b ≈ 35, m ≈ 100, so this time is

completely infeasible!

Real-World Minimax

• The minimax algorithm given here only stores
the utility values; "real-world" minimax should
store utility values and the move that gives
you the value.

• This is usually done by keeping an auxiliary
data structure called a transposition table; this
table also cuts down on search time.
– Table stores, for every state, the minimax value

and corresponding best move.

Nim

Nim

• How to represent a state?
• How to represent an action?

