
Reinforcement Learning Homework 
 

1. Suppose you are training an AI agent to drive a car down a perfectly straight road.  The road has three 
lanes, and you want the AI to always stay in the middle lane. 
 
Suppose we set up our Markov Decision Process with three states, corresponding to the three lanes of 
the road, called Left, Center, and Right.  So the agent will always be in the state corresponding to its 
lane. 
 
The agent may take one of three actions: Go-Straight, Shift-Left, or Shift-Right.  These actions are 
designed to (in a perfect world), keep the car in the same lane, shift one lane to the left, or shift one 
lane to the right.  Shift-Left is not possible from the left lane, and Shift-Right is not possible from the 
right lane. 
 
However, this agent is driving in Memphis, which has streets full of potholes, so each action only ever 
has a 0.75 probability of succeeding.  The other 25% of the time, the agent will end up in a different 
lane than the one intended, according to this chart: 
 
Agent in Lane  Action  Result and probability 
Left   Go-Straight Left  0.75 
""   ""  Center  0.25 
""   Shift-Right Center  0.75 
""   ""  Left  0.25 
 
Right   Go-Straight Right  0.75 
""   ""  Center  0.25 
""   Shift-Left Center  0.75 
""   ""  Right  0.25 
 
Center   Go-Straight Center  0.75 
""   ""  Left  0.125 
""   ""  Right  0.125 
""   Shift-Right Right  0.75 
""   ""  Center  0.25 
""   Shift-Left Left  0.75 
""   ""  Center  0.25 
 
The agent receives a reward depending on the state it enters (after taking an action).  The reward is +2 
for being in the center lane, and +1 for being in either the left or right lane. 
 

a. Draw the MDP describing this situation.  To make the diagram less cluttered, do not draw the 
rewards in the diagram, just the states (Left, Center, Right), and show arrows with the actions 
and probabilities. 
 

b. Suppose after running the value iteration algorithm on this MDP, with a gamma value of 0.9, 
the values that we converge to are all identical (this is actually true).  V[Left] = V[Center] = 
V[Right] = 17.5. 
 
Use these three V-values and the recursive relationship between the V and Q equations (see 



the RL notes handout) to fill in the following table of Q-values:  (one below is already done for 
you) 
 

Q[Center, Go-Straight] = 
 
Q[Center, Shift-Left] = 17 
 
Q[Center, Shift-Right] =  
 
Q[Left, Go-Straight] =  
 
Q[Left, Shift-Right] =  
 
Q[Right, Go-Straight] =  
 
Q[Right, Shift-Left] =  
 

 
Hint: This is the equation you want to use: 

 
 
Walkthrough for computing Q[Center, Shift-Left]: 
 
If the agent is in the Center state (s=Center), and chooses the action Shift-Left (a=Shift-Left), 
then there are two possible next states, either s' = Left (with prob=0.75) or s' = Center (with 
prob=0.25).  R(Center, Shift-Left, Left) = +1, and R(Center, Shift-Left, Center) = +2, and the V-
value of each state is 17.5, so the math becomes: 
 
Q[Center, Shift-Left] = 0.75*(1 + (0.9)(17.5)) + 0.25*(2 + (0.9)(17.5)) = 17 
 
 

c. Use your table of Q-values to derive the optimal policy for the agent (tell me the optimal action 
for each state).  To be fair, this should be pretty obvious, but show your work anyway. 
 

d. (1 bonus point extra credit): Why are all three V-values the same (17.5), given that we get 2 
points for being in the center lane but only 1 point for being in the left or right lanes? 
 

2. In the game of Nim, two players alternate taking sticks away from piles.  On their turn, each player may 
remove any number of sticks, but only from one pile at a time.  The player who is forced to take the 
last stick loses.  (Note: A player loses when they take the last stick of the entire game, not the last stick 
from a pile.) 
 
We will call the two players "A" and "B."  We will represent states by the letter of the player who is 
about to move, followed by the number of sticks left in each pile.  So if we start with three piles of 3, 4, 
and 5 sticks, then the first state of the game would be "A345."  We will represent actions by two-digit 
numbers, the first digit being the number of pile the player chooses to remove sticks from (0-based, so 



0=the first pile, 1=the second pile, etc), and the second digit being the number of sticks the player 
chooses to remove from that pile. 
 
Let's imagine a game that is close to being over: say we are in state A012.  At this point, pile 0 is empty, 
pile has 1 stick left, and pile 2 has 2 sticks left.  Player A has three choices for actions: 11 (choose pile 1, 
take 1 stick), 21 (choose pile 2, take 1 stick), and 22 (choose pile 2, take 2 sticks).  Each of these three 
actions would result in the next state being B002, B011, and B010.  Note that there are no probabilities 
in this game; it is deterministic: each action only has one possible resulting next-state.  (Makes the 
MDP much simpler). 
 
The whole game only has two rewards.  If "A" wins, they get +1000, and if "B" wins, they get -1000.  (So 
"A" is the maximizing player, and "B" is the minimizing player.) 
 
We will use gamma = 0.9, and alpha = 1.  The reason we use alpha=1 is because in a deterministic 
environment (one with no randomness), Q-learning learns quickest with alpha=1 and still guarantees 
convergence to the correct Q* values. 
 
In this project, you will walk through a few rounds of (2-player) Q-learning with the game of Nim.  
Specifically, we will start with piles of 0, 1, and 2 sticks at the beginning of each game, and player A 
always moves first. 
 
Here are the games I want you to use.  (Remember, in the real world, these games would all be played 
according to some policy that balances exploration and exploitation, but I'm going to just tell you what 
moves to make in this case.) 
 
Game 1: A plays action 22, then B plays action 11 (ends the game). 
Game 2: A plays action 11, then B plays action 22 (ends the game). 
Game 3: A plays action 11, then B plays action 21, then A plays action 21 (ends the game). 
Game 4: A plays action 22, then B plays action 11 (ends the game). 
 
At the end of this homework are two tables similar to those we used in class to practice Q-learning 
with blackjack.  Fill them in for games 1-4 (you can ignore games 5, 6, and 7 unless you want more 
practice).  The first game is already done for you (on the sheet in blue), and the walkthrough is below: 
 
Game 1: 

• The start state is A012 (so s=A012).  A plays action 22, so a=22.  (From pile 2, take 2 sticks.)   
• The reward we get here is zero (the only non-zero rewards are when someone wins).  [Here I 

wrote "0" in the "r" box.]   
• Player B will go next, and they are left with piles of 0, 1, 0 sticks, so the next state (s') is B010.  [I 

wrote B010 in the s' box.] 
• The next step here is the max/min Q[s',a'] step.  Player A is playing, but they use the "min" 

version of the Q-learning update equation because s' is a move for Player B.  So we must 
calculate the best action for player B from s'=B010.  We look in the table at the top of the page, 
and for B010, there's only one action (which should be obvious), which is Q[B010, 11], which is 
zero right now (since nothing's been updated).  So the minimum over all possible actions a' of 
Q[s', a'] is 0.  [I wrote 0 in the max/min box.] 



• The next step is to run the update.  To be clear, we are using the update equation 

, and we have all the pieces: 
 
s = A012 a = 22  r=0 s'=B010 max/min=0 alpha=1 gamma=0.9 
And at this moment, Q[A012, 22] = 0. 
 
So the update is: Q[A012, 22] = 0 + (1)[0 + (0.9)(0) – 0] = 0.  So I put a 0 under Game 1 for 
Q[A012, 11]. 
 
 

• So now we are in state B010 (s=B010).  B plays action 11, so a=11 (from pile 1, take 1 stick). 
• The reward here we will get is 1000 (because B was forced to take the last stick), so they lose, 

and A wins, and thus we get +1000 points.  [I put 1000 in the "r" box.] 
• The next state here doesn't really matter, since the game is over, but you can put A000 in the 

box (since it represents that "A" would move next if they could). 
• The next step is the max/min Q[s',a'] step.  Because the game is over, this is zero, since there 

are no future rewards from the next state.  [0 in the max/min box] 
• The next step is to run the update.  Now we are using Player B's update equation: 

, and our pieces are: 
 
s=B010  a=11 r=1000  s'=A000 max/min=0  (same alpha/gamma) 
 
And right now, Q[B010, 11] = 0. 
 
So the update is Q[B010, 11] = 0 + (1)[1000 + (0.9)(0) – 0] = 1000.  So I put 1000 under Game 1 
for Q[B010, 11]. 
 



 


