More Statistical Inference

Review

- Let event $\mathrm{D}=$ data we have observed.
- Let events H_{1}, ..., H_{k} be events representing hypotheses we want to choose between.
- Use D to pick the "best" H.
- There are two "standard" ways to do this, depending on what information we have available.

Maximum likelihood hypothesis

- The maximum likelihood hypothesis $\left(\mathrm{H}^{\mathrm{ML}}\right)$ is the hypothesis that maximizes the probability of the data given that hypothesis.

$$
H^{\mathrm{ML}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right)
$$

- How to use it: compute $P\left(D \mid H_{i}\right)$ for each hypothesis and select the one with the greatest value.

Maximum a posteriori (MAP) hypothesis

- The MAP hypothesis is the hypothesis that maximizes the posterior probability:

$$
\begin{aligned}
H^{\mathrm{MAP}} & =\underset{i}{\operatorname{argmax}} P\left(H_{i} \mid D\right) \\
& =\underset{i}{\operatorname{argmax}} \frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& \propto \underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
\end{aligned}
$$

- The $P\left(D \mid H_{i}\right)$ terms are now weighted by the hypothesis prior probabilities.

One slide to rule them all

- The maximum likelihood hypothesis is the hypothesis that maximizes the probability of the observed data:

$$
H^{\mathrm{ML}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right)
$$

- The MAP hypothesis is the hypothesis that maximizes the posterior probability given D :

$$
H^{\mathrm{MAP}}=\underset{i}{\operatorname{argmax}} P\left(D \mid H_{i}\right) P\left(H_{i}\right)
$$

- $P\left(H_{i}\right)$ is called the prior probability (or just prior).
- $P\left(H_{i} \mid D\right)$ is called the posterior probability.
- There are 3 robots.
- Robot 1 will hand you a snack drawn at random from 2 doughnuts and 7 carrots.
- Robot 2 will hand you a snack drawn at random from 4 apples and 3 carrots.
- Robot 3 will hand you a snack drawn at random from 7 burgers and 7 carrots.
- Suppose your friend goes up to a robot (you don't see this happen) and is given a carrot. Which robot did your friend probably approach?
- What if the prior probability of your friend approaching robots 1,2 , and 3 are $20 \%, 40 \%$, and 40%, respectively?

Probability vs hypothesis

- Sometimes you only care about which hypothesis is more likely, and sometimes you need the actual probability.

$$
\begin{aligned}
P\left(H_{i} \mid D\right) & =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D, H_{j}\right)} \\
& =\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
\end{aligned}
$$

$$
P\left(H_{i} \mid D\right)=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{P(D)}=\frac{P\left(D \mid H_{i}\right) P\left(H_{i}\right)}{\sum_{j} P\left(D \mid H_{j}\right) P\left(H_{j}\right)}
$$

- In the robot problem, what is $P(R 3 \mid C)$?

Probability vs hypothesis

- In the robot problem, what is $\mathrm{P}(\mathrm{R} 3 \mid \mathrm{C})$?

$$
\begin{aligned}
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{P(C)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C, R_{i}\right)} \\
& P\left(R_{3} \mid C\right)=\frac{P\left(C \mid R_{3}\right) P\left(R_{3}\right)}{\sum_{i=1}^{3} P\left(C \mid R_{i}\right) P\left(R_{i}\right)}
\end{aligned}
$$

$$
=(1 / 2 * 4 / 10) /(7 / 9 * 2 / 10+3 / 7 * 4 / 10+1 / 2 * 4 / 10)=\sim 0.3795
$$

- Suppose I work in FJ in a windowless office. I want to know whether it's raining outside. The chance of rain is 70%. My colleague walks in wearing his raincoat. If it's raining, there's a 65\% chance he'll be wearing a raincoat. Since he's very unfashionable, there's a 45\% chance he'll be wearing his raincoat even if it's not raining. My other colleague walks in with wet hair. When it's raining there's a 90% chance her hair will be wet. However, since she sometimes goes to the gym before work, there's a 40% chance her hair will be wet even if it's not raining.
- What's the posterior probability that it's raining?
- We can't solve this problem because we don't have any information about the probability of Colleague 1 wearing a raincoat and Colleague 2 having wet hair occurring simultaneously.
- We don't know P(C, W \| R).
- Let's make an assumption that C and W are conditionally independent given that it is raining (or not raining).
- $P(C, W \mid R)=P(C \mid R)^{*} P(W \mid R)$
- (and similarly for given $\sim R$)

Combining evidence

- It is very common to make this independence assumption for multiple pieces of evidence (data).

$$
\begin{aligned}
P\left(H_{i} \mid D_{1}, \ldots, D_{m}\right) & =\frac{P\left(D_{1}, \ldots, D_{m} \mid H_{i}\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)} \\
& =\frac{\left(P\left(D_{1} \mid H_{i}\right) \cdots P\left(D_{m} \mid H_{i}\right)\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)} \\
& =\frac{\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)}{P\left(D_{1}, \ldots, D_{m}\right)}
\end{aligned}
$$

where $P\left(D_{1} \ldots, D_{m}\right)=\sum_{i=1}^{k}\left(\prod_{j=1}^{m} P\left(D_{j} \mid H_{i}\right)\right) P\left(H_{i}\right)$

