
Statistical Inference



Toolbox so far

• Uninformed search
– BFS, DFS, Dijkstra’s algorithm (Uniform-cost search)

• Heuristic search
– A*, greedy best-first search

• Probability and Bayes nets
– Exact inference algorithm, approximate inference 

algorithms



Bayesian networks
(Bayes nets)

• Specify a full joint probability distribution.
– Uses conditional and marginal independences to 

represent information compactly.
– Example of a probabilistic model.

• All probability questions have a unique right 
answer.
–We can use the exact inference algorithm for 

Bayes nets to find it.



Real world

• Real world situations are often missing a 
model (maybe we don't have all the 
information necessary to create a Bayes net).

• We only have a small handful of observations 
about the world and we aren't entirely sure 
about how things relate to each other.

• How can we make probability estimates now?



Statistical inference

• Statistical inference lets us make probability 
estimations from observations about the way 
the world works, even if those observations 
don't tell the full story.
– How likely is this email spam?
–What is the probability it will rain tomorrow?
– If I visit a certain house when trick-or-treating, 

what is the chance I'll get a Snickers bar?



Types of inference

• Hypothesis testing:
– Given two or more hypotheses (events), decide 

which one is more likely to be true based on some 
data.

– Example: Is this email spam or not spam?
• Parameter inference:
– Given a model that is missing some probabilities, 

estimate those probabilities from data.
– Example: Estimate bias of a coin from flips.



Hypothesis testing

• Let D be the event that we have observed some 
data.
– Ex: D = received an email containing "cash" and 

"viagra"
– Sometimes D is also called evidence or observations.

• Let H1, …, Hk be disjoint, exhaustive events 
representing hypotheses to choose between.
– Ex: H1 = this email is spam, H2 = it's not spam.

• How do we use D to decide which H is most 
likely?



Maximum likelihood

• Suppose we know or can estimate the 
probability P(D | Hi) for each Hi.

• The maximum likelihood (ML) hypothesis is:

• How to use it: compute P(D | Hi) for each 
hypothesis and select the one with the 
greatest value.

HML = argmaxi P(D |Hi )
HML = 
maximum 
likelihood 
hypothesis

What is argmax?  It means evaluate P(D|Hi) for all 
hypotheses Hi and take the *hypothesis* that 
maximizes P(D|Hi).  This is not a number; this is a 
hypothesis (an event)!



• Professors Larkins and Sanders bake cookies for all of 
the CS students! Each professor keeps the cookies in 
their offices and the students can go pick one up.

• Sanders has baked an equal number of both chocolate 
chip and oatmeal raisin cookies.

• Larkins has baked chocolate chip and oatmeal raisin and 
as well, but twice as many oatmeal raisin as chocolate 
chip.

• I ask my friend to get me a cookie.  I know they will visit 
either Larkins or Sanders.  My friend comes back with a 
chocolate chip cookie.

• Is my cookie more likely to 
have been baked by Sanders
or Larkins?



• I know that when my parents send me a 
check, there is an 98% chance that they will 
send it in a yellow envelope. 

• I also know that when my dentist sends me a 
bill, there is a 5% chance that they will send it 
in a yellow envelope. 

• Suppose a yellow envelope arrives on my 
doorstep. 

• What is the maximum likelihood hypothesis 
regarding the sender? 



Why ML sometimes is bad

• Suppose I tell you that there is a 3% chance 
that my any given envelope will be from my 
parents and a 97% chance that any given 
envelope will be from my dentist. Does it still 
seem likely that the envelope contains a check 
from my parents? 



Bayesian reasoning

• Rather than compute P(D | Hi), let's compute 
P(Hi | D).

• What is the posterior probability of Hi given 
D?

P (Hi | D) =
P (D | Hi)P (Hi)

P (D)
= ↵P (D | Hi)P (Hi)



MAP hypothesis

• Maximum a posteriori (MAP) hypothesis is the 
Hi that maximizes the posterior probability:

HML = argmaxi P(Hi |D)

HML = argmaxi
P(D |Hi )P(Hi )

P(D)
HML = argmaxi P(D |Hi )P(Hi )



ML vs MAP

• The MAP hypothesis takes the prior 
probability of each hypothesis into account, 
ML does not.

HML = argmaxi P(D |Hi )

HMAP = argmaxi P(D |Hi )P(Hi )



• Professors Larkins and Sanders bake cookies for all of 
the CS students! Each professor keeps the cookies in 
their offices and the students can go pick one up.

• Sanders has baked an equal number of both chocolate 
chip and oatmeal raisin cookies.

• Larkins has baked chocolate chip and oatmeal raisin 
and as well, but twice as many oatmeal raisin as 
chocolate chip.

• I ask my friend to get me a cookie.  Suppose I know 
that my friend picks Larkins' cookies 90% of the time.  
My friend comes back with a chocolate chip one.

• Is my cookie more likely to have been baked by Larkins 
or Sanders?



• I know that when my parents send me a check, 
there is an 98% chance that they will send it in a 
yellow envelope. 

• I know that when my dentist sends me a bill, 
there is a 5% chance that she will send it in a 
yellow envelope. 

• Unfortunately, I also know that there is a only a 
3% chance that any given envelope will be from 
my parents, while there is a is a 97% chance that 
any given envelope will be from my dentist. 

• Suppose a yellow envelope arrives on my 
doorstep. What is the MAP hypothesis regarding 
the sender? 



• There are 3 robots. 
• Robot 1 will hand you a snack drawn at random from 

2 doughnuts and 7 carrots. 
• Robot 2 will hand you a snack drawn at random from 

4 apples and 3 carrots. 
• Robot 3 will hand you a snack drawn at random from 

7 burgers and 7 carrots. 
• Suppose your friend goes up to a robot (you don’t 

see this happen) and is given a carrot.  Which robot 
did your friend probably approach?

• What if the prior probability of your friend 
approaching robots 1, 2, and 3 are 20%, 40%, and 
40%, respectively? 



ML vs MAP

• When are the two hypothesis predictions the 
same?

HML = argmaxi P(D |Hi )

HMAP = argmaxi P(D |Hi )P(Hi )



Probability vs hypothesis
• Sometimes you only care about which 

hypothesis is more likely, and sometimes you 
need the actual probability.

=
P (D | Hi)P (Hi)P

j P (D,Hj)

=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)



=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)

• In the robot problem, what is P(R3 | C)?



Probability vs hypothesis
• In the robot problem, what is P(R3 | C)?

= (1/2 * 4/10) / (7/9 * 2/10 + 3/7 * 4/10 + 1/2 * 4/10) =~ 0.3795



One slide to rule them all
• The maximum likelihood hypothesis is the 

hypothesis that maximizes the probability of the 
observed data:

• The MAP hypothesis is the hypothesis that 
maximizes the posterior probability given D:

• P(Hi) is called the prior probability (or just prior).
• P(Hi|D) is called the posterior probability.

H
ML = argmax

i
P (D | Hi)

H
MAP = argmax

i
P (D | Hi)P (Hi)



• There are 3 robots. 
• Robot 1 will hand you a snack drawn at random from 

2 doughnuts and 7 carrots. 
• Robot 2 will hand you a snack drawn at random from 

4 apples and 3 carrots. 
• Robot 3 will hand you a snack drawn at random from 

7 burgers and 7 carrots. 
• Suppose your friend goes up to a robot (you don’t 

see this happen) and is given a carrot.  Which robot 
did your friend probably approach?

• What if the prior probability of your friend 
approaching robots 1, 2, and 3 are 20%, 40%, and 
40%, respectively? 



Probability vs hypothesis
• Sometimes you only care about which 

hypothesis is more likely, and sometimes you 
need the actual probability.

=
P (D | Hi)P (Hi)P

j P (D,Hj)

=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)



=
P (D | Hi)P (Hi)P
j P (D | Hj)P (Hj)

• In the robot problem, what is P(R3 | C)?



Probability vs hypothesis
• In the robot problem, what is P(R3 | C)?

= (7/9 * 2/10) / (7/9 * 2/10 + 3/7 * 4/10 + 1/2 * 4/10) ~= 0.3795



• Suppose I work in FJ in a windowless office.  I 
want to know whether it's raining outside.  The 
chance of rain is 70%. My colleague walks in 
wearing his raincoat. If it’s raining, there’s a 65% 
chance he’ll be wearing a raincoat. Since he’s very 
unfashionable, there’s a 45% chance he’ll be 
wearing his raincoat even if it’s not raining. My 
other colleague walks in with wet hair. When it’s 
raining there’s a 90% chance her hair will be wet. 
However, since she sometimes goes to the gym 
before work, there’s a 40% chance her hair will be 
wet even if it’s not raining. 

• What’s the posterior probability that it’s raining?  



• We can't solve this problem because we don’t 
have any information about the probability of 
Colleague 1 wearing a raincoat and Colleague 
2 having wet hair occurring simultaneously. 

• We don't know P(C, W | R).
• Let's make an assumption that C and W are 

conditionally independent given that it is 
raining (or not raining).

• P(C, W | R) = P(C | R) * P(W | R)
– (and similarly for given ~R)



Combining evidence
• It is very common to make this independence assumption for 

multiple pieces of evidence (data).

where

P (Hi | D1, . . . , Dm) =
P (D1, . . . , Dm | Hi)P (Hi)

P (D1, . . . , Dm)

=

�
P (D1 | Hi) · · ·P (Dm | Hi)

�
P (Hi)

P (D1, . . . , Dm)

=

�Qm
j=1 P (Dj | Hi)

�
P (Hi)

P (D1, . . . , Dm)

P (D1 . . . , Dm) =
kX

i=1

⇣ mY

j=1

P (Dj | Hi)
⌘
P (Hi)


