
Agents

Agents interact with their environment through sensors and
actuators.

Rational Agents

• Rational agent:
– For every possible percept sequence, a rational

agent should
– select an action that is expected to maximize its

performance measure,
– given evidence provided by the percept sequence

and whatever built-in knowledge the agent has.

Rational Agents

• Rational agent:
– For every possible percept sequence, a rational

agent should
– select an action that is expected to maximize its

performance measure,
– given evidence provided by the percept sequence

and whatever built-in knowledge the agent has.

Rational Agents

• Rational agent:
– For every possible percept sequence, a rational

agent should
– select an action that is expected to maximize its

performance measure,
– given evidence provided by the percept sequence

and whatever built-in knowledge the agent has.

Rational Agents

• Rational agent:
– For every possible percept sequence, a rational

agent should
– select an action that is expected to maximize its

performance measure,
– given evidence provided by the percept sequence

and whatever built-in knowledge the agent has.

Environments

• Fully-observable vs partially-observable
• Single agent vs multiple agents
• Deterministic vs non-deterministic
• Episodic vs sequential
• Static or dynamic
• Discrete or continuous

State Space Search

Environments

• Fully-observable vs partially-observable
• Single agent vs multiple agents
• Deterministic vs stochastic
• Episodic vs sequential
• Static or dynamic
• Discrete or continuous

Overview

• Problem-solving as search
• How to formulate an AI problem as search.
• Uninformed search methods

What is search? (3.1)

What is search?

Environmental factors needed

• Static — The world does not change on its
own, and our actions don't change it.

• Discrete — A finite number of individual
states exist rather than a continuous space of
options.

• Observable — States can be determined by
observations.

• Deterministic — Action have certain
outcomes.

• The environment is all the information about the
world that remains constant while we are solving
the problem.

• A state is the set of properties that define the
current conditions of the world our agent is in.
– Think of this as a snapshot of the world at a given point

in time.
– The entire set of possible states is called the state

space.
• The initial state is the state the agent begins in.
• A goal state is a state where the agent may end

the search.
• Agents move from state to state by taking actions.

Moving from state to state has an associated cost.

• How does an agent know what actions are possible in a
state?
– Imagine a function ACTIONS(s) that returns the set of

actions possible in a state s.
• How does an agent know what state they go to when

they take an action?
– Imagine a function RESULT(s, a) that returns the new state s'

that you end up in when taking action a from state s.
• How does an agent know when they have reached a goal

state?
– Imagine a function IS-GOAL(s) that returns true/false.

• How does an agent know the cost of moving from one
state to another?
– Imagine a function ACTION-COST(s, a, s') which returns the

cost of taking action a in state s and moving to state s'.

Formulating problems as search (3.2)

• Canonical problem: route-finding
– Route-finding with traveling salesperson problem.

• Sliding block puzzle (almost any kind of game
or puzzle can be formulated this way).

• Roomba problem.

Formulate navigation problem

Formulate navigation problem

Formulate 8-puzzle problem

Formulate Roomba problem

Formulate Roomba problem

Formulating problems as search

• A solution to a search problem is a path
between the initial state and a goal state.

• The quality of a solution is measured by path
cost, which is the sum of all the individual
costs along the way.

• Optimal solutions have the lowest cost of any
possible path.

• Side note:
• Consider whether the search space forms a

tree or a graph.
– Often there are faster versions of these algorithms

for searching trees.

Recap

• What things do we need to define in order to
formulate a problem as a search problem?

• Always a good idea to try to visualize the
graph of the search space.

Generic search algorithms (3.3)

• All search algorithms work in essentially the
same manner:

• Start with initial state.
• Generate all possible successor states (a.k.a.

"expanding a node."
• Pick a new node to expand.
• Continue until we find a goal state.

• There are two simultaneous graph-like structures
used in search algorithms:
– (1) Graph (or tree) of underlying state space.
– (2) Tree maintaining the record of the current search

in progress (the search tree).

• (1) does not depend on the current search being
run.

• (1) is sometimes not even stored in memory (too
big!)

• (2) always depends on the current search, and is
always stored in memory. It is created on the fly
during the running of the search algorithm.

Search tree

• A node n of the search tree stores:
– a state (of the state space)
– a pointer to the state's parent node (usually)
– the action that got you from the parent to n

(sometimes)
– the path cost g(n): cost of the path so far from the

initial state to n.

Generic search algorithms' data
structures

• Frontier: a data structure storing the
collection of nodes that are available to be
examined next in the algorithm.
– Often represented as a stack, queue, or priority

queue.

• Reached: a map from states to nodes.
– Used to quickly access the priorities of states

stored in the frontier to see if the algorithm has
found a better priority.

How do you evaluate a search
algorithm?

• Completeness — Does the algorithm always
find a solution if one exists?

• Optimality — Does the algorithm find the best
solution?

• Time complexity
• Space complexity

Uninformed search methods

• These methods have no information about
which nodes are on promising paths to a
solution.

• Also called: blind search

Uninformed search algorithms

• Breadth-first search
– Variant — Uniform-cost search

• Depth-first search

Breadth-first search

• Choose shallowest node for expansion.
• Data structure for frontier?
– Queue (regular, FIFO)

• Complete? Optimal? Time? Space?

Depth-first search

• Choose deepest node to expand.
• Data structure for frontier?
– Stack (or just use recursion)

• Complete? Optimal? Time? Space?

Uniform-cost search

• Choose node with lowest path cost g(n) for
expansion.

• Data structure for frontier?
– Priority queue

• Suppose we come upon the same state twice.
Do we re-add to the frontier?
– Yes, if lower path cost.

Uniform-cost search

• Choose node with lowest path cost g(n) for
expansion.

• Data structure for frontier?
– Priority queue

• Suppose we come upon the same state twice.
Do we re-add to the frontier?
– Yes, if lower path cost.

• Complete? Optimal? Time? Space?

Review – State Space Search
• Strategy – Discover the best (shortest,

cheapest, quickest, etc) path from the initial
state to a goal state.

• State:

• State space:

Review – State Space Search
• Node:

• Search tree:

• Frontier:

• Reached:

Review – Uniform Cost Search

• aka Dijkstra's algorithm
• Frontier = priority queue
– Sorted by g(n):

• Always expand lowest g(n) node on the
frontier.

• Time/Space:
• Complete? Optimal?

A* and variations

• Same algorithm as uniform-cost search.
• Uses a different evaluation function to sort

the priority queue.
• Need a heuristic function, h(n).
– h(n) = Estimate of lowest-cost path from node n to

a goal state.
– In other words = an estimate of the distance

remaining.

Visualizing a heuristic function

A* Algorithm

• Sort priority queue by a function f(n), which
should be the estimated lowest-cost path
through node n.

• How do we define f(n)?
– Remember: g(n) = sum of costs from start state to

node n.
– h(n) = Estimate of lowest-cost path from node n to

a goal state.
– f(n) = g(n) + h(n)

Properties of A*

Heuristics

• A heuristic function h(n) is admissible if it
never over-estimates the true lowest cost to a
goal state from node n.

• Equivalent: h(n) must always be less than or
equal to the true cost from node n to a goal.

• What happens if we just set h(n) = 0 for all n?

Heuristics
• A heuristic function h(n) is consistent if values of

h(n) along any path in the search tree are non-
decreasing.

• Equivalent definition of consistency: given a node
n, and an action which takes you from n to node
n':
h(n) <= cost(n, a, n') + h(n')
h(n) – h(n') <= cost(n, a, n')

• Consistency implies admissibility (but not the
other way around).

• Difficult to invent (natural) heuristics that are
admissible but not consistent.

A* Algorithm

• A* is optimal if h(n) is consistent (and
therefore admissible).
– If your search space is a tree, A* only needs an

admissible heuristic to be optimal, but this is
uncommon.

Where do heuristics come from?

Where do heuristics come from?

Greedy best-first search

• Use just h(n) to sort priority queue.
• Optimal?
• Complete?

Summary

• Uniform cost search (Dijkstra) [sort by g(n)]
– Complete and optimal.

• A* [sort by f(n) = g(n) + h(n)]
– Complete and optimal, assuming an admissible

and consistent heuristic.

• Greedy best first search [sort by h(n)]
– Complete, but not optimal.

Stanley Milgram

Travers & Milgram (1969)

Source

Target

• 296 letters
• 22% reached target
• Median chain length = 6

To: Joe Smith
Stockbroker
Boston, MA

