Markov Chains

Toolbox

- Search: uninformed/heuristic
- Adversarial search
- Probability
- Bayes nets
- Naive Bayes classifiers
- Statistical inference

Reasoning over time

- In a Bayes net, each random variable (node) takes on one specific value.
- Good for modeling static situations.
- What if we need to model a situation that is changing over time?

Example: Comcast

- In 2004 and 2007, Comcast had the worst customer satisfaction rating of any company or gov't agency, including the IRS.
- I have cable internet service from Comcast, and sometimes my router goes down. If the router is online, it will be online the next day with prob=0.8. If it's offline, it will be offline the next day with prob=0.4.
- How do we model the probability that my router will be online/offline tomorrow? In 2 days?

Example: Waiting in line

- You go to the Apple Store to buy the latest iPhone. Every minute, the first person in line is served with prob=0.5.
- Every minute, a new person joins the line with probability

1 if the line length=0
$2 / 3$ if the line length=1
$1 / 3$ if the line length=2
0 if the line length=3

- How do we model what the line will look like in 1 minute? In 5 minutes?

Markov Chains

- A Markov chain is a type of Bayes net with a potentially infinite number of variables (nodes).
- Each variable describes the state of the system at a given point in time (t).

Markov Chains

- Markov property:

$$
P\left(X_{t} \mid X_{t-1}, X_{t-2}, X_{t-3}, \ldots\right)=P\left(X_{t} \mid X_{t-1}\right)
$$

- Probabilities for each variable are identical:

$$
P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{1} \mid X_{0}\right)
$$

Markov Chains

- Since these are just Bayes nets, we can use standard Bayes net ideas.
- Shortcut notation: $X_{i: j}$ will refer to all variables X_{i} through X_{j}, inclusive.
- Common questions:
- What is the probability of a specific event happening in the future?
- What is the probability of a specific sequence of events happening in the future?

An alternate formulation

- We have a set of states, S.
- The Markov chain is always in exactly one state at any given time t .
- The chain transitions to a new state at each time t+1 based only on the current state at time t.

$$
p_{i j}=P\left(X_{t+1}=j \mid X_{t}=i\right)
$$

- Chain must specify $p_{i j}$ for all i and j, and starting probabilities for $P\left(X_{0}=j\right)$ for all j.

Two different representations

- As a Bayes net:

- As a state transition diagram (similar to a DFA/NFA):

Formulate Comcast in both ways

- I have cable internet service from Comcast, and sometimes my router goes down. If the router is online, it will be online the next day with prob=0.8. If it's offline, it will be offline the next day with prob=0.4.
- Let's draw this situation in both ways.
- Assume on day 0 , probability of router being down is 0.5 .

Comcast

- What is the probability my router is offline for 3 days in a row (days 0,1 , and 2)?
$-P\left(X_{2}=\right.$ off, $X_{1}=$ off, $\left.X_{0}=o f f\right)$?
- $\mathrm{P}\left(\mathrm{X}_{2}=\right.$ off $\mid \mathrm{X}_{0}=$ off, $\mathrm{X}_{1}=$ off $) * P\left(\mathrm{X}_{0}=\right.$ off, $\mathrm{X}_{1}=$ off $) \quad$ [mult rule]
$-P\left(X_{2}=\right.$ off $\mid X_{0}=$ off, $X_{1}=$ off $) * P\left(X_{1}=\right.$ off $\mid X_{0}=$ off $) * P\left(X_{0}=\right.$ off $)$
$-\mathrm{P}\left(\mathrm{X}_{2}=\right.$ off $\mid \mathrm{X}_{1}=$ off $) * \mathrm{P}\left(\mathrm{X}_{1}=\right.$ off $\mid \mathrm{X}_{0}=$ off $) * \mathrm{P}\left(\mathrm{X}_{0}=\right.$ off $)$
$-p_{\text {off,off }} * p_{\text {off,off }} * P\left(X_{0}=o f f\right)$

$$
P\left(x_{0: t}\right)=P\left(x_{0}\right) \prod_{i=1}^{t} P\left(x_{i} \mid x_{i-1}\right)
$$

More Comcast

- Suppose I don't know if my router is online right now (day 0). What is the prob it is offline tomorrow?
$-P\left(X_{1}=o f f\right)$
$-P\left(X_{1}=\right.$ off $)=P\left(X_{1}=\right.$ off,$X_{0}=$ on $)+P\left(X_{1}=\right.$ off,$X_{0}=$ off $)$
$-P\left(X_{1}=\right.$ off $)=P\left(X_{1}=\right.$ off $\mid X_{0}=$ on $) * P\left(X_{0}=\right.$ on $)$
$+P\left(X_{1}=\right.$ off $\mid X_{0}=$ off $) * P\left(X_{0}=\right.$ off $)$
$P\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t}\right)$

More Comcast

- Suppose I don't know if my router is online right now (day 0). What is the prob it is offline the day after tomorrow?
$-P\left(X_{2}=o f f\right)$
$-P\left(X_{2}=\right.$ off $)=P\left(X_{2}=\right.$ off,$X_{1}=$ on $)+P\left(X_{2}=\right.$ off,$X_{1}=$ off $)$
$-P\left(X_{2}=\right.$ off $)=P\left(X_{2}=\right.$ off $\mid X_{1}=$ on $) * P\left(X_{1}=\right.$ on $)$
$+P\left(X_{2}=\right.$ off $\mid X_{1}=$ off $) * P\left(X_{1}=\right.$ off $)$
$P\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t}\right)$

Markov chains with matrices

- Define a transition matrix for the chain:

$$
T=\left[\begin{array}{ll}
0.8 & 0.2 \\
0.6 & 0.4
\end{array}\right]
$$

- Each row of the matrix represents the transition probabilities leaving a state.
- Let $\mathrm{v}_{\mathrm{t}}=\mathrm{a}$ row vector representing the probability that the chain is in each state at time t .
- $v_{t}=v_{t-1} * T$

Formulate this matrix

- If the stock market is up one day, then it will be up the next day with prob=0.7.
- If it's down one day, it will be down the next day with prob=0.4.

Mini-forward algorithm

- Suppose we are given the value of X_{t} or a probability distribution over X_{t} and we want to predict $\mathrm{X}_{\mathrm{t}+1}, \mathrm{X}_{\mathrm{t}+2}, \mathrm{X}_{\mathrm{t}+3} \cdots$
- Make row vector $v_{t}=P\left(X_{t}\right)$
- Note that v_{t} can be something like [1, 0] if you know the true value of X_{t}, or it can be a distribution over values.
- $v_{t+1}=v_{t}^{*} T$
- $\mathrm{v}_{\mathrm{t}+2}=\mathrm{v}_{\mathrm{t}+1} * \mathrm{~T}=\mathrm{v}_{\mathrm{t}} * \mathrm{~T} * \mathrm{~T}=\mathrm{v}_{\mathrm{t}} * \mathrm{~T}^{2}$
- $v_{t+3}=v_{t} * T^{3}$
- $v_{t+n}=v_{t} * T^{n}$

Back to the Apple Store...

- You go to the Apple Store to buy the latest iPhone.
- Every minute, a new person joins the line with probability

1 if the line length=0
$2 / 3$ if the line length=1
$1 / 3$ if the line length=2
0 if the line length=3

- Immediately after (in the same minute), the first person is helped with prob $=0.5$
- Model this as a Markov chain, assuming the line starts empty. Draw the state transition diagram.
- What is T ? What is v_{0} ?
- Markov chains are pretty easy!
- But sometimes they aren't realistic...
- What if we can't directly know the states of the model, but we can see some indirect evidence resulting from the states?

Weather

- Regular Markov chain
- Each day the weather is rainy or sunny.
$-P\left(X_{t}=\right.$ rain $\mid X_{t-1}=$ rain $)=0.7$
$-P\left(X_{t}=\right.$ sunny $\mid X_{t-1}=$ sunny $)=0.9$
- Twist:
- Suppose you work in an office with no windows. All you can observe is weather your colleague brings their umbrella to work.

Hidden Markov Models

- The X's are the state variables (never directly observed).
- The E's are evidence variables.

Common real-world uses

- Speech processing:
- Observations are sounds, states are words or phonemes.
- Localization:
- Observations are inputs from video cameras or microphones, state is the actual location.
- Video processing (example):
- Extracting a human walking from each video frame. Observations are the frames, states are the positions of the legs.

Hidden Markov Models

- $P\left(X_{t} \mid X_{t-1}, X_{t-2}, X_{t-3}, \ldots\right)=P\left(X_{t} \mid X_{t-1}\right)$
- $P\left(X_{t} \mid X_{t-1}\right)=P\left(X_{1} \mid X_{0}\right)$
- $P\left(E_{t} \mid X_{0: t}, E_{0: t-1}\right)=P\left(E_{t} \mid X_{t}\right)$
- $P\left(E_{t} \mid X_{t}\right)=P\left(E_{1} \mid X_{1}\right)$

Hidden Markov Models

- What is $\mathrm{P}\left(\mathrm{X}_{0: \mathrm{t}}, \mathrm{E}_{1: t}\right)$?

$$
P\left(X_{0}\right) \prod_{i=1}^{t} P\left(X_{i} \mid X_{i-1}\right) P\left(E_{i} \mid X_{i}\right)
$$

Common questions

- Filtering: Given a sequence of observations, what is the most probable current state?
- Compute $P\left(X_{t} \mid e_{1: t}\right)$
- Prediction: Given a sequence of observations, what is the most probable future state?
- Compute $P\left(X_{t+k} \mid e_{1: t}\right)$ for some $k>0$
- Smoothing: Given a sequence of observations, what is the most probable past state?
- Compute $P\left(X_{k} \mid e_{1: t}\right)$ for some $k<t$

Common questions

- Most likely explanation: Given a sequence of observations, what is the most probable sequence of states?
- Compute $\underset{x_{1: t}}{\operatorname{argmax}} P\left(x_{1: t} \mid e_{1: t}\right)$
- Learning: How can we estimate the transition and sensor models from real-world data? (Future machine learning class?)

Hidden Markov Models

- $P\left(R_{t}=\right.$ yes $\mid R_{t-1}=$ yes $)=0.7$
$P\left(R_{t}=\right.$ yes $\left.\mid R_{t-1}=n o\right)=0.1$
- $P\left(U_{t}=\right.$ yes $\left.\mid R_{t}=y e s\right)=0.9$
$P\left(U_{t}=\right.$ yes $\left.\mid R_{t}=n o\right)=0.2$

Filtering

- Filtering is concerned with finding the most probable "current" state from a sequence of evidence.
- Let's compute this.

Recall the "mini-forward algorithm"

For Markov chains:

$$
P\left(X_{t+1}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t}\right)
$$

with matrices: $\mathrm{v}_{\mathrm{t}+1}=\mathrm{v}_{\mathrm{t}} * \mathrm{~T}$, with $\mathrm{v}_{0}=\mathrm{P}\left(\mathrm{X}_{0}\right)$
For HMM's:
$P\left(X_{t+1} \mid e_{1: t+1}\right)=$
$\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

Forward algorithm

- Today is Day 2, and I've been pulling allnighters for two days!
- My colleague brought their umbrella on days 1 and 2.
- What is the probability it is raining today? - that is, find $P\left(X_{t} \mid e_{1: t}\right) \quad[$ filtering]
- Assume initial distribution of rain/not-rain for Day 0 is 50-50.

Matrices to the rescue!

- Define a transition matrix T as normal.
- Define a sequence of observation matrices O_{1} through O_{t}.
- Each O matrix is a diagonal matrix with the entries corresponding to observation at time t given each state.

$$
f_{1: t+1}=\alpha f_{1: t} \cdot T \cdot O_{t+1}
$$

where each f is a row vector containing the probability distribution at timestep t.
$f 1: 0=[0.5,0.5] \quad f 1: 1=[0.75,0.25] \quad f 1: 2=[0.846,0.154]$

f1:0 $=P(R 0)=[0.5,0.5]$
$\mathrm{f} 1: 1=\mathrm{P}(\mathrm{R} 1 \mid \mathrm{u} 1)=\boldsymbol{\alpha} * \mathrm{f} 1: 0$ * $\mathrm{T} * \mathrm{O} 1=\boldsymbol{\alpha}[0.36,0.12]=[0.75,0.25]$
$f 1: 2=P(R 2 \mid u 1, u 2)=\boldsymbol{\alpha} * f 1: 1 * T * 02=\boldsymbol{\alpha}[0.495,0.09]=[.846, .154]$

Forward algorithm

- Note that the forward algorithm only gives you the probability of X_{t} taking into account evidence at times 1 through t.
- In other words, say you calculate $P\left(X_{1} \mid e_{1}\right)$ using the forward algorithm, then you calculate $P\left(X_{2} \mid e_{1}, e_{2}\right)$.
- Knowing e2 changes your calculation of X 1 .
- That is, $P\left(X_{1} \mid e_{1}\right)!=P\left(X_{1} \mid e_{1}, e_{2}\right)$

Backward algorithm

- Updates previous probabilities to take into account new evidence.
- Calculates $\mathrm{P}\left(\mathrm{X}_{\mathrm{k}} \mid \mathrm{e}_{1: \mathrm{t}}\right)$ for $\mathrm{k}<\mathrm{t}$
- aka smoothing. (not the same kind of smoothing as in Naïve bayes)

Backward algorithm

- Algorithm generates a backward vector b for every timestep t.
- This vector is based on the observation at time k and the next day's backward vector.

$$
b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t}
$$

- The initial backwards vector is for day $t+1$ and is a column vector of all 1's.

$$
b_{t+1: t}=[1 ; \cdots ; 1]
$$

Backwards algorithm

- Each backward vector is used to scale the previous day's forward vector.
- After normalization, this is the updated probability for day k.

$$
P\left(X_{k} \mid e_{1: t}\right)=\alpha f_{1: k} \times b_{k+1: t}
$$

- (Remember, that multiplication above is an item by item multiplication, not a matrix multiplication.)

Backward matrices

- Main equations:

$$
\begin{aligned}
& b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t} \\
& b_{t+1: t}=[1 ; \cdots ; 1] \quad \text { (column vector of } 1 \mathrm{~s} \text {) } \\
& P\left(X_{k} \mid e_{1: t}\right)=\alpha f_{1: k} \times b_{k+1: t}
\end{aligned}
$$

```
f1:0=[0.5, 0.5] f1:1=[0.75,0.25] f1:2=[0.846, 0.154]
b1:2=[0.4509, 0.1107] b2:2=[0.69, 0.27] b3:2=[1; 1]
mult=[0.803,0.197] mult=[0.885,0.115]
```


b3:2 $=[1 ; 1]$
b2:2 = T * O2 * b3:2 = [0.69, 0.27]
$\mathrm{P}(\mathrm{R} 1 \mid \mathrm{u} 1, \mathrm{u} 2)=\boldsymbol{\alpha} \mathrm{f} 1: 1 \times \mathrm{b} 2: 2=\boldsymbol{\alpha}[0.5175,0.0675]=[0.885,0.115]$
b1:2 = T * O1 * b2:2 = [0.4509, 0.1107]
$P(R 0 \mid u 1, u 2)=\boldsymbol{\alpha} f 1: 0 \times b 1: 2=\boldsymbol{\alpha}[0.2255,0.0554]=[0.803,0.197]$

Forward-backward algorithm

$$
\begin{aligned}
& f_{1: 0}=P\left(X_{0}\right) \\
& f_{1: t+1}=\alpha f_{1: t} \cdot T \cdot O_{t+1}
\end{aligned}
$$

Compute these forward from X_{0} to wherever you want to stop $\left(X_{t}\right)$

$$
\begin{aligned}
& b_{t+1: t}=[1 ; \cdots ; 1] \\
& b_{k: t}=T \cdot O_{k} \cdot b_{k+1: t} \\
& P\left(X_{k} \mid e_{1: t}\right)=\alpha f_{1: k} \times b_{k+1: t}
\end{aligned}
$$

Compute these backwards from $\mathrm{X}_{\mathrm{t}+1}$ to X_{0}.

