
CS 360
Programming Languages

Victory Lap

Final Exam
• Monday, May 1, 5:30PM.
• Material will be split somewhat evenly between pre-midterm and post-

midterm. (Possible slight emphasis on post-midterm).
– Including topics on projects and not on projects.

• You will need to write code (Java, Racket) and English.

Final Exam
Topics will be a subset of the following:
• All the stuff from the midterm (Racket in general, box-and-pointer, closures,

recursion/tail-recursion, no mutation, lexical/dynamic scoping)
• Delayed evaluation, thunks
• Streams
• Memoization
• Threading
• Mini-Racket interpreter (and

interpreters in general) Keys to the game:
Know what a topic is,
what it's good for, what
it's bad for, how to use it,
how it relates to other
topics, and how to code it.

Victory Lap
A victory lap is an extra trip
around the track

– By the exhausted
victors (us) J

Review course goals
– See if we met them.

Some big themes and perspectives
– Stuff for five years from now more than for the final.

Thank you!
• You all made this a great class!

– Great attitude about a very different view of programming.
– Good class attendance and questions.
– Occasionally laughed at stuff J.

Thank you!
• My fourth time teaching this course; not my area of expertise.

(But I had a great time!)
• Feedback is appreciated on projects, tests, and their respective

difficulty (too hard, too easy, just right?)

[From Lecture 1]

We have 14 weeks to learn the fundamental concepts of programming
languages.

With hard work, patience, and an open mind, this course makes you a
much better programmer.

– Even in languages we won’t use.
– Learn the core ideas around which every language is built, despite

countless surface-level differences and variations.
– Poor course summary: “We learned Racket and Java.”

[From Lecture 1]
• Focus on the essential concepts relevant in any programming language.

– See how these pieces fit together.

• Use Racket and Java (possibly others) because:
– They let many of the concepts “shine.”
– Using multiple languages shows how the same concept can “look

different” or actually be slightly different in another language.

• A big focus on functional programming
– No mutation (assignment statements) (!)
– No loops! Only recursion!
– Using first-class functions (can’t explain that yet).

[From Lecture 1]

Learning to think about software in this “PL” way will
make you a better programmer even if/when you go back

to old ways.

It will also give you the mental tools and experience you
need for a lifetime of confidently picking up new

languages and ideas.

[From motivation lecture]
• A good mechanic might have a specialty, but also understands how “cars”

(not 2014 Honda Civics) work.
– And that the syntax---I mean upholstery color---isn’t essential.

• A good mechanical engineer really knows how cars work, how to get the
most out of them, and how to design better ones.

• To learn how cars work, it may make sense to start with a classic design
rather than the latest model.

– A popular car may not be a good car for learning how cars work.

[From motivation lecture]
This course focuses as much as it can on semantics and idioms.

• Correct reasoning about programs, interfaces, and interpreters or compilers
requires a precise knowledge of semantics.

– Not “I think that conditional expressions might work like this.”
– Not “I like curly braces more than parentheses.”
– Much of software development is designing precise interfaces; what a PL

means is a really good example.

• Idioms make you a better programmer.
– Best to see in multiple settings, including where they shine.
– See future languages in a clearer light.

[From motivation lecture]
• No such thing as a “best” PL.

• There are good general design principles for PLs.

• A good language is a relevant, crisp interface for writing software.

• Software leaders should know PL semantics and idioms.

• Learning PLs is not about syntactic tricks for small programs.

• Functional languages have been on the leading edge for decades.
– Ideas get absorbed by the mainstream, but very slowly.
– Meanwhile, use the ideas to be a better programmer in Java and Python.

Benefits of No Mutation
• Can freely alias or copy values/objects.

• No need to make local copies of data.

Allowing mutation is appropriate when you are modeling a phenomenon that is
inherently state-based (meaning there are variables that hold the "state" of the
system and will need to change.)

– Performing an accumulation over a collection (e.g., summing a list) isn't!

Some other highlights
• Function closures are really powerful and convenient…

– … and implementing them is not magic.

• Static typing (and static checking) prevents certain errors…
– … but makes some types of code more complicated.

• Multi-threading can make really neat programs…
– … but introduces a lot of sticky situations (synch, wait/notifyAll)
– … partially addressed by event-driven programming.

From the syllabus
[Caveat: I wrote the goals, so not surprising I hope we met them.]

Successful course participants will:
• obtain an accurate understanding of what functional and object-oriented

programs mean,
• develop the skills necessary to learn new programming languages quickly,
• master specific language concepts such that they can recognize them in

strange guises,
• learn to evaluate the power and elegance of programming languages and

their constructs,
• attain reasonable proficiency in a number of popular programming

languages, and,
• become more proficient in languages they already know

From the "so-called experts" J
• Once a decade or so, ACM/IEEE updates a "standard CS curriculum"

– A specification of what every CS undergraduate degree should teach its
students

• Last updated in 2013!
– Let's take a look at a draft and see how well we did.
– (Note that not everything in the PL section of the draft will be taught in a

single course.)

What next?
• Take these ideas and use them in practice!

– (But only where it makes sense.)
• Be confident when reading documentation, unfamiliar code, learning a {new

PL, new PL library, new programming paradigm}.

• Stay in touch
– Tell me when this class helps you out with something cool (seriously).
– Ask me cool PL questions (may not always know the answer, but I can tell

you where to find it).
– Don't be a stranger: let me know how the rest of your time at Rhodes

(and beyond!) goes… I really do like to know.

YOUR
INTERPRETER!

