
CS 360 
Programming Languages

Streams Wrapup



Quick Review of Constructing Streams
• Usually two ways to construct a stream.
• Method 1: Use a function that takes a(n) argument(s) from which the next 

element of the stream can be constructed.

(define (integers-from n)
(stream-cons n (integers-from (+ n 1))))

(define ints-from-2 (integers-from 2))

• When you use this technique, your code usually looks a lot like you have 
infinite recursion.

• Often the code is very clear (easy to see how it works).



Quick Review of Constructing Streams
• Usually two ways to construct a stream.
• Method 2: Construct the stream directly by defining it in terms of a modified 

version of another stream or itself.

(define ints-from-2-alt 
(stream-cons 2 

(stream-map (lambda (x) (+ x 1)) 
ints-from-2-alt)))

• This technique is fine, but can be harder to figure out how it works.



Quick Review of Constructing Streams
• Usually two ways to construct a stream.
• Method 2: Construct the stream directly by defining it in terms of a modified 

version of another stream or itself.

(define ints-from-2-alt-alt
(stream-cons 2 

(stream-map2 + 
infinite-ones 
ints-from-2-alt-alt)))



Fibonacci
• Method 1:

(define (make-fib-stream a b)

(stream-cons a (make-fib-stream b (+ a b))))

(define fibs1 (make-fib-stream 0 1))



Fibonacci
• Method 2:

(define fibs 
(stream-cons 0

(stream-cons 1
(stream-map2 + (stream-cdr fibs) fibs))))



Sieve of Eratosthenes
• Start with an infinite stream of integers, starting from 2.
• Remove all the integers divisible by 2.
• Remove all the integers divisible by 3.
• Remove all the integers divisible by 5…etc



Sieve of Eratosthenes

(define (not-divisible-by s div)
(stream-filter 

(lambda (x) (> (remainder x div) 0)) s))

(define (sieve s)
(stream-cons
(stream-car s)
(sieve (not-divisible-by s (stream-car s)))))

(define primes (sieve ints-from-2))



Fibonacci
(define (make-fib-stream a b)

(stream-cons a (make-fib-stream b (+ a b))))
(define fibs1 (make-fib-stream 0 1))

• More efficient (but less clear?) than

(define (fib n)
(cond ((= n 0) 0)

((= n 1) 1)
(#t (+ (fib (- n 1)) (fib (- n 2))))))

• How to get the best of both worlds?



Memoization
• If a function has no side effects and doesn’t read mutable memory, no point 

in computing it twice for the same arguments
– Can keep a cache of previous results
– Net win if (1) maintaining cache is cheaper than recomputing and (2) 

cached results are reused

• Similar to how we implemented promises, but the function takes arguments 
so there are multiple “previous results”

• For recursive functions, this memoization can lead to exponentially faster 
programs

– Related to algorithmic technique of dynamic programming



(define fast-fib
(let ((cache '()))
(define (lookup-in-cache cache n)
(cond ((null? cache) #f)

((= (caar cache) n) (cadar cache))
(#t (lookup-in-cache (cdr cache) n))))

(lambda (n)
(if (or (= n 0) (= n 1)) n

(let ((check-cache (lookup-in-cache cache n)))
(cond ((not check-cache) 

(let ((answer (+ (fast-fib (- n 1))
(fast-fib (- n 2)))))

(set! cache (cons (list n answer) cache))
answer))

(#t check-cache)))))))



Memoization in other languages
• Code for memoization is often easier with an explicit hashtable data 

structure:
int fib(int n) {

static map<int, int> cache;
if (n < 2) return n;
if (cache.count(n) == 0) {

int ans = fib(n-1) + fib(n-2);
cache[n] = ans;
return ans;

} else return cache[n];
}



Memoization wrapup
• Memoization is related to streams in that streams also remember their 

previously-computed values.
– Remember how promises save their results and return them instead of 

re-computing?
• But memoization is more flexible because it works with any function.

• Memoization is a classic example of the time-space trade-off in CS:
– With memoization, we use more space, but use less time.


