CS 360
Programming Languages
Day 15 —

Delayed Evaluation & Streams

F scala ej

Swift

& Dart

JavaScript



The truth comes out!

e Everything that looks like a function call in Racket is not necessarily a
function call.

e Everything that looks like a function call is either
— A function call (as we thought).
— Or a “special form.”
e Special forms: define, let, lambda, if, cond, and, or, ...
e Why can’t these be functions?
e Recall the evaluation model for a function call:

— (£ el e2 e3..):evaluateel e2 ..toobtainvaluesvl v2..,then
evaluate £ to get a closure, then evaluate the body of the closure with its

arguments bound tovl v2..
— Why would this not work for defining 1 £?



Evaluation strategies

e Every programming language uses an evaluation strategy to figure out two
things:

— when to evaluate the arguments of a function call (or other operation),
and

— what kind of value to pass to the function.

 You have explored the "what kind of value" issue in CS142:
— pass by value versus pass by reference.

— There are others: e.g., pass by name.

e When to evaluate arguments?

— Most PLs use eager evaluation (args are evaluated completely before
being passed to the function).

— Today we will explore delayed or lazy evaluation.



Delayed evaluation

 In Racket, function arguments are eager.
Special form arguments are lazy.

— Delay evaluation of the argument until we really need its value.

e Why wouldn’t these functions work?

(define (my-if-bad x y z)
(if x y z))

(define (fact-wrong n)
(my-if-bad (= n 0)
1
(* n (fact-wrong (- n 1)))))



Thunks

e We know how to delay evaluation: put expression in a function definition!
— Because defining a function doesn’t run the code until later.

e A zero-argument function used to delay evaluation is called a thunk.
— As a verb: thunk the expression.

e This works (though silly to re-define i £ like this):

(define (my-if x y z)
(1f x (y) (z2)))

(define (fact n)
(my-if (= n 0)
(lambda () 1)
(lambda () (* n (fact (- n 1))))))



Try this one

Write a function called while that takes two arguments:
— athunk called condition
— athunk called body

This function should emulate a while loop: test the condition, and if it's
true, run the body. Then test the condition again, and if it's still true,
run the body again. Continue until the condition is false.

— You will likely need to use (begin).

— The while function itself may return whatever you want.

Using your while function, write a while loop that prints the numbers 1 to 10.

Define a function called my-length that takes one list argument. my-
length should return the length of the list argument. Use your while loop.



Thunks

Think of a thunk as a “promise” to “evaluate this expression as soon as we
really need the value.”

(define result
(compute-answer-to-life-univ-and-everything))

— Would take a really long time to calculate result.

(define result
(lambda ()
(compute-answer-to-life-univ-and-everything)))

— Note that just by defining a variable to hold the result doesn’t mean we
“really” need it yet.

(1f (= (result) 42)
(do something) (do something else))

— Now we need the value, so we compute it with (result).



Avoiding expensive computations

Thunks let you skip expensive computations if they aren’t needed.
(define result
(lambda ()
(compute-answer-to-life-univ-and-everything)))
(Lf (want-to-know-answer?)
(display (result)) (display V“save time”))

Don’t compute the answer to life, the universe, and everything unless you really
want to know.

e Pro: More flexible than putting the computation itself inside of the if
statement.

e (Con: Every time we call (result), we compute the answer again! (Time
waste, assuming the answer doesn’t change)



; simulate a long computation time
(define (compute-answer-to-life)
(begin (sleep 3) 42))

; create a thunk for the answer
(define answer
(lambda () (compute-answer-to-life))))

(answer) ; 3 second pause, then 42
(answer) ; 3 second pause again, then 42



Best of both worlds

Assuming our expensive computation has no side effects, ideally we would:
— Not compute it until needed.

— Remember the answer so future uses don’t re-compute (memoization).

This is known as lazy evaluation.

Languages where most constructs, including function calls, work this way are
called lazy languages (e.g., Haskell).

Racket by default is an eager language, but we can add support for laziness.



Best of both worlds

e Here is our strategy for introducing optional laziness into an eager language:

e C(Create a data structure called a promise to represent a computation that
may or may not take place at some point in the future.
— Promises must store a thunk (the code for the computation),
— something representing whether or not the thunk has been evaluated
yet,
— and the result of the thunk if it has been evaluated.

e Promises are not specific to Racket (though they appear a lot in similar
functional languages). Other languages call them futures (e.g., Python, Java,

C++).



Implementing promises

We will use a mutable pair to implement the promise data structure.

The car will always be a boolean, the cdr will be one of two things:

e #fincar means cdr is an unevaluated thunk.

* #tincar means cdris the result of evaluating the thunk.

(define (make-promise thunk)
(mcons #£f thunk))

(define (eval-promise p)
(Lf (mcar p)
(mcdr p)
(begin (set-mcar! p #t)

make-promise: create a promise

data type for the thunk
argument.

eval-promise: return
result of thunk (either
run it and save the

(set-medr! p ((medr p))) return value for later, or

(mcdr p))))

return previously-saved
value).




Using promises

; simulate a long computation time
(define (compute-answer-to-life)
(begin (sleep 3) 42))

; create a promise to hold a thunk for the answer
(define answer2
(make-promise

(Lambda () (compute-answer-to-life))))

(eval-promise answer2) ; 3 second pause, then 42
(eval-promise answer2) ; instant 42



Racket promises

e Making our own promise data structure is still clunky because we have to
explicitly wrap the thunk in a lambda.

e Racket has built-in promises (yay!)
— (delay e):special form thatis equivalent to our make-promise.

e (No extra lambda needed, b/c delay is a special form).

— (force p):equivalent to our function eval-promise.

e Evaluates a promise (something returned by delay) to compute
whatever the value of e is. Also caches the value so future forces will
be very fast, even if the evaluation of the original expression is slow.



(define (compute-answer-to-life)
(begin (sleep 3) 42))

(define answer3 (delay (compute-answer-to-life)))
(force answer3) ; 3 second pause, then 42

(force answer3) ; instant 42



Lazy lists, or streams

e One common use of delayed evaluation is to create a “lazy list,” or a
“stream.”

e By convention, a stream is just like a Racket list in that it consists of two
parts: the car and the cdr.

— Only difference is that the cdr is lazy (car is not usually lazy).

— In other words, the cdr is a promise to return the rest of the stream when
its really needed.

e We do this by creating a function that creates a cons cell where the car is
normal but the cdr is lazy.



Streams

« stream-cons: a special form that creates a new pair where the car is
eager but the cdr is lazy.

— alternatively, think of this as creating a new stream from a new first
element and an existing stream.

— just like regular cons creates a new list from a new first element and an
existing list:
e (cons'1 '(2 3)) = '"(1 2 3)

* (define (stream-cons first rest)
(cons first (delay rest))

the above definition is correct in spirit, though wrong in syntax because we
need to make stream-cons a special form so that rest won't be

evaluated when stream-cons is called.



Streams

(define-syntax-rule (stream-cons first rest)

(cons first (delay rest)))

(define (stream-car stream)
(car stream))

(define (stream-cdr stream)
(force (cdr stream)))

(define the-empty-stream ' ())

(define (stream-null? stream)
(null? stream))

This is how you

create a special form.




Let's try it out



