
CS 360 
Programming Languages

Day 15 –
Delayed Evaluation & Streams



The truth comes out!
• Everything that looks like a function call in Racket is not necessarily a 

function call.
• Everything that looks like a function call is either

– A function call (as we thought).
– Or a “special form.”

• Special forms: define, let, lambda, if, cond, and, or, …
• Why can’t these be functions?
• Recall the evaluation model for a function call:

– (f e1 e2 e3…): evaluate e1 e2 … to obtain values v1 v2…, then 
evaluate f to get a closure, then evaluate the body of the closure with its 
arguments bound to v1 v2…

– Why would this not work for defining if?



Evaluation strategies
• Every programming language uses an evaluation strategy to figure out two 

things:
– when to evaluate the arguments of a function call (or other operation), 

and
– what kind of value to pass to the function.

• You have explored the "what kind of value" issue in CS142:
– pass by value versus pass by reference.
– There are others: e.g., pass by name.

• When to evaluate arguments?
– Most PLs use eager evaluation (args are evaluated completely before 

being passed to the function).
– Today we will explore delayed or lazy evaluation.



Delayed evaluation
• In Racket, function arguments are eager.

Special form arguments are lazy.
– Delay evaluation of the argument until we really need its value.

• Why wouldn’t these functions work?

(define (my-if-bad x y z) 
(if x y z))

(define (fact-wrong n) 
(my-if-bad (= n 0)

1
(* n (fact-wrong (- n 1)))))



Thunks
• We know how to delay evaluation: put expression in a function definition!

– Because defining a function doesn’t run the code until later.

• A zero-argument function used to delay evaluation is called a thunk.
– As a verb: thunk the expression.

• This works (though silly to re-define if like this):

(define (my-if x y z) 
(if x (y) (z)))

(define (fact n) 
(my-if (= n 0)

(lambda () 1)
(lambda () (* n (fact (- n 1))))))



Try this one
• Write a function called while that takes two arguments:

– a thunk called condition
– a thunk called body

• This function should emulate a while loop: test the condition, and if it's 
true, run the body.  Then test the condition again, and if it's still true, 
run the body again.  Continue until the condition is false.

– You will likely need to use (begin).
– The while function itself may return whatever you want.

• Using your while function, write a while loop that prints the numbers 1 to 10.

• Define a function called my-length that takes one list argument. my-
length should return the length of the list argument.  Use your while loop.



Thunks
• Think of a thunk as a “promise” to “evaluate this expression as soon as we 

really need the value.”
• (define result 

(compute-answer-to-life-univ-and-everything))
– Would take a really long time to calculate result.

• (define result 
(lambda ()
(compute-answer-to-life-univ-and-everything)))

– Note that just by defining a variable to hold the result doesn’t mean we 
“really” need it yet.

• (if (= (result) 42) 
(do something) (do something else))

– Now we need the value, so we compute it with (result).



Avoiding expensive computations
Thunks let you skip expensive computations if they aren’t needed.
(define result 

(lambda ()
(compute-answer-to-life-univ-and-everything)))

(if (want-to-know-answer?) 
(display (result)) (display “save time”))

Don’t compute the answer to life, the universe, and everything unless you really 
want to know.
• Pro: More flexible than putting the computation itself inside of the if 

statement.
• Con: Every time we call (result), we compute the answer again!  (Time 

waste, assuming the answer doesn’t change)



; simulate a long computation time
(define (compute-answer-to-life) 

(begin (sleep 3) 42))

; create a thunk for the answer
(define answer 

(lambda () (compute-answer-to-life))))

(answer) ; 3 second pause, then 42
(answer) ; 3 second pause again, then 42



Best of both worlds
• Assuming our expensive computation has no side effects, ideally we would:

– Not compute it until needed.
– Remember the answer so future uses don’t re-compute (memoization).

• This is known as lazy evaluation.

• Languages where most constructs, including function calls, work this way are 
called lazy languages (e.g., Haskell).

• Racket by default is an eager language, but we can add support for laziness.



Best of both worlds
• Here is our strategy for introducing optional laziness into an eager language:

• Create a data structure called a promise to represent a computation that 
may or may not take place at some point in the future.

– Promises must store a thunk (the code for the computation),
– something representing whether or not the thunk has been evaluated 

yet,
– and the result of the thunk if it has been evaluated.

• Promises are not specific to Racket (though they appear a lot in similar 
functional languages).  Other languages call them futures (e.g., Python, Java, 
C++).



Implementing promises
We will use a mutable pair to implement the promise data structure.
The car will always be a boolean, the cdr will be one of two things:
• #f in car means cdr is an unevaluated thunk.
• #t in car means cdr is the result of evaluating the thunk.

(define (make-promise thunk)
(mcons #f thunk))

(define (eval-promise p)
(if (mcar p)

(mcdr p)
(begin (set-mcar! p #t)

(set-mcdr! p ((mcdr p)))
(mcdr p))))

make-promise: create a promise 
data type for the thunk
argument. 

eval-promise: return 
result of thunk (either 
run it and save the 
return value for later, or
return previously-saved 
value).



Using promises

; simulate a long computation time
(define (compute-answer-to-life) 

(begin (sleep 3) 42))

; create a promise to hold a thunk for the answer
(define answer2

(make-promise
(lambda () (compute-answer-to-life))))

(eval-promise answer2) ; 3 second pause, then 42
(eval-promise answer2) ; instant 42



Racket promises
• Making our own promise data structure is still clunky because we have to

explicitly wrap the thunk in a lambda.

• Racket has built-in promises (yay!)
– (delay e): special form that is equivalent to our make-promise.

• (No extra lambda needed, b/c delay is a special form).

– (force p): equivalent to our function eval-promise.
• Evaluates a promise (something returned by delay) to compute 

whatever the value of e is. Also caches the value so future forces will 
be very fast, even if the evaluation of the original expression is slow.



(define (compute-answer-to-life) 
(begin (sleep 3) 42))

(define answer3 (delay (compute-answer-to-life)))
(force answer3) ; 3 second pause, then 42
(force answer3) ; instant 42



Lazy lists, or streams
• One common use of delayed evaluation is to create a “lazy list,” or a 

“stream.”

• By convention, a stream is just like a Racket list in that it consists of two 
parts: the car and the cdr.

– Only difference is that the cdr is lazy (car is not usually lazy).
– In other words, the cdr is a promise to return the rest of the stream when 

its really needed.

• We do this by creating a function that creates a cons cell where the car is 
normal but the cdr is lazy.



Streams
• stream-cons: a special form that creates a new pair where the car is 

eager but the cdr is lazy.
– alternatively, think of this as creating a new stream from a new first 

element and an existing stream.
– just like regular cons creates a new list from a new first element and an 

existing list:
• (cons 1 '(2 3)) è '(1 2 3)

• (define (stream-cons first rest) 
(cons first (delay rest))

the above definition is correct in spirit, though wrong in syntax because we 
need to make stream-cons a special form so that rest won't be 
evaluated when stream-cons is called.



Streams
(define-syntax-rule (stream-cons first rest) 

(cons first (delay rest)))

(define (stream-car stream)
(car stream))

(define (stream-cdr stream)
(force (cdr stream)))

(define the-empty-stream '())

(define (stream-null? stream)
(null? stream))

This is how you 
create a special form.



Let's try it out


