
CS 360
Programming Languages

Day 8

Review
• A first-class citizen is a data type that can be

– Passed as an argument to a function.
– Returned as a value from a function.
– Assigned to a variable.
– (Stored in a data structure.)
– (Created at run-time [dynamically, on-the-fly])

• First three are always part of the definition; last two sometimes.

Review
• Lambda expression: creates and returns

an anonymous function.

(lambda (arg1 arg2 ...) expression)

Term comes from the lambda calculus.
– Developed by Alonzo Church.
– A formal way of studying the properties of computation, like Turing

machines.

Review
• Higher order functions:

– Take functions as arguments, or
– Return functions.

• Map and filter both take functions as arguments.

– Map: Applies a function to every (top-level) item within a list.
(map func lst)

– Filter: Takes a list L and a predicate P; returns a list of all the
values in L that satisfy P.

(filter pred lst)

Map examples
(define (map func lst)

(if (null? lst) '()
(cons (func (car lst)) (map func (cdr lst)))))

(define (double x) (* x 2))
(map double '(1 2 3)) => '(2 4 6)

(map (lambda (x) (* x 2)) '(1 2 3)) => '(2 4 6)

(map car '((1 2 3) (4 5) (6) (7 8 9))) => '(1 4 6 7)

(define (scale factor lst)
(map (lambda (x) (* x factor)) lst)

(scale 2 '(1 2 3)) => '(2 4 6)

Map examples
(map (lambda (x) (+ x 1)) '(1 2 3)) => ?

(map (lambda (x) (cons x '()) '(1 2 3)) => ?

(map (lambda (x) (list x)) '(1 2 3)) => ?

(map (lambda (x)
(if (> x 0) (* x 2) (* x 3))) '(1 -2 -3 4))

Key to using map with lambda expression: the argument to the lambda
expression (x) represents each element of the list in turn.

Filter examples
(define (filter func lst)

(cond ((null? lst) '()
((func (car lst))

(cons (func (car lst)) (filter func (cdr lst))))
(#t

(filter func (cdr lst)))))

(filter odd? '(1 2 3)) => '(1 3)

(define (keep-odds lst)
(filter odd? lst)

(filter (lambda (x) (> x 0)) '(-1 2 -3 4)) => '(2 4)

Filter examples
(filter (lambda (x) (= 1 (remainder x 2))) '(1 2 3)) => ?

(define (keep-divisible factor lst)
(filter ______ lst))

(filter (lambda (lst) (even? (car lst)))
'((1 2 3) (4 5) (6 7))) => ?

(filter (lambda (lst) (even? (car lst)))
'((1 2 3) (4 5) (6 7) ())) => ?

(define (keep-longer-than n lst)
(filter ______ lst))

• Recall that Racket has a expt function:
– (expt x y) => x raised to the y power

• We can define a square function like this:
(define (square x) (expt x 2))

• Or a cube function like this:
(define (cube x) (expt x 3))

• But this gets rather repetitive.

• What if we wanted to create a lot of these "raise to a power"
functions?

Functions that return functions!
(define (to-the-power exponent)

(lambda (x) (expt x exponent)))

Functions that return functions!

(define (to-the-power exponent)
(lambda (x) (expt x exponent)))

Define a function
called to-the-power
that takes a variable
called exponent…

…that returns an
anonymous function of
a single variable x…

…that raises x to the power of the
exponent variable.

How to use this

• Old way:
– (define (square x) (expt x 2))
– (define (cube x) (expt x 3))

• New way:
– (define square (to-the-power 2))
– (define cube (to-the-power 3))

• Notice that the new way doesn't use extra parentheses around the
name of the function
– Don't need 'em: what would we do with the argument?

Another example
• (define (add3 num) (+ 3 num))
• (define (add17 num) (+ 17 num))

• New way:
(define (create-add-function inc)

(lambda (num) (+ inc num)))
(define add3 (create-add-function 3))
(define add17 (create-add-function 17))

Getting more complicated
• How about a function that takes functions as arguments

and returns a new function?

• (define (compose f g)
(lambda (x) (f (g x))))

• (define second (compose car cdr))
• (define third (compose car

(compose cdr cdr)))

• (map third '((2013 5 6) (2012 1 8)
(2000 7 7)))

Transformations on functions
• Imagine you have a function that must take a non-empty list argument:

• (define (make-safe func)
(lambda (lst)
(if (or (not (list? lst))

(null? lst))
"No can do!"
(func lst))))

More families of functions
(define (divisible n)

(lambda (x) (= 0 (remainder x n))))

(define (make-quad-polynomial a b c)
(lambda (x)
(+ (* a x x) (* b x) c)))

A little syntax
• How to call a function:

– (f e1 e2 e3…)

– f is a function name and e1, e2… are expressions that will be
evaluated and passed as the values of the arguments to f.

• Turns out f doesn't have to be a function name.

• f can be any expression that evaluates to a function!

A little syntax
• All of these evaluate to a function:

– the name of a function (e.g., cons, car, +, …)
– a lambda expression
– a function call that

returns a function

One more abstraction. Compare:

(define (length lst)
(if (null? lst) 0

(+ 1 (length (cdr lst)))))

(define (sum-list lst)
(if (null? lst) 0

(+ (car lst) (sum-list (cdr lst)))))

(define (map func lst)
(if (null? lst) '()

(cons (func (car lst)) (map func (cdr lst)))))

One more abstraction. Compare:

(define (length lst)
(if (null? lst) 0

(+ 1 (length (cdr lst)))))

(define (sum-list lst)
(if (null? lst) 0

(+ (car lst) (sum-list (cdr lst)))))

(define (map func lst)
(if (null? lst) '()

(cons (func (car lst)) (map func (cdr lst)))))

One function to rule them all
(define (foldr func base lst)

(if (null? lst) base
(func (car lst)

(foldr func base (cdr lst)))))

foldr

(foldr func base lst)

func

1 func

2 func

3 base

Say lst = '(1 2 3)
• Foldr applies func repeatedly to

pairs of items, starting from the right
end of the list.

• The first two items are the last item
in the list and the base element.

• The function must be a function of
two items.
(f 1 (f 2 (f 3 base)))

• In general, for lst = (x1 x2 … xn)
• (f x1 (f x2 (f x3 (f … (f xn base)))…)

(define (sum-list-new lst)

(foldr + 0 lst))

(define (length-new lst)
(foldr

(lambda (elt cdr-len) (+ 1 cdr-len))
0 lst))

(define (my-map func lst)
(foldr

(lambda (car cdr) (cons (func car) cdr))
'() lst))

