
CS 360
Programming Languages

Day 4

Today

• Learn the common recursive paradigms that you will see in lots of
Racket functions.

• Practice writing functions.

Example list functions
(define (sum-list lst)

(if (null? lst)
0
(+ (car lst) (sum-list (cdr lst)))))

(define (countdown num)
(if (= num 0)

'()
(cons num (countdown (- num 1)))))

Recursion again
Functions that process lists are usually recursive.

– Only way to “get to all the elements”

• What should the answer be for the empty list?
– Usually, this is your base case.

• What should the answer be for a non-empty list?
– Typically a combination of doing something with the car of the list

and a recursive call on the cdr of the list.

Similarly, functions that produce lists of potentially any size will be
recursive.

– You create a list out of smaller lists (with cons, list, or append).

The cond expression
We have two "if-then-else" expressions in Racket:

• (if test e1 e2)
– evaluates to e1 if test is #t, otherwise evaluates to e2.

• (cond (test1 e1)
(test2 e2)
...
(#t en))

– evaluates to e1 if test1 is #t
– evaluates to e2 if test2 is #t
– (etc)
– evaluates to en if all prior tests are #f
– The last #t clause is optional, but is useful as an "else".

Processing nested lists
(define (length lst)
(if (null? lst) 0
(+ 1 (length (cdr lst)))))

(define (length-nested lst)
(cond ((null? lst) 0)

((list? (car lst))
(+ (length-nested (car lst))

(length-nested (cdr lst))))
(#t (+ 1 (length-nested (cdr lst))))))

Other useful functions and reminders
• (and e1 e2...)
• (or e1 e2...)
• (not expr)

– e.g., (not (= a b))
• (remainder x y)

– returns remainder of x divided by y
• Remember the differences between cons, list, and append:
• (cons item lst)

– makes a new list with item as the first element, and the items in
lst as the rest of the list.

• (list a b c...)
– makes a new list of (a b c...)

• (append lst1 lst2...)
– makes a new list of the items inside of lst1, then the items inside

of lst2...

