
CS 360
Programming Languages
Day 14 – Closure Idioms

Why lexical scope rocks
• Last time: currying

• Today: implementing callbacks and object-oriented programming.

Review: mutable state
• Racket's variables are mutable.

• The name of any function which mutates something contains a "!"

• Mutate a variable with set!
– (set! variable new-value)

– Only works after the variable has been placed into an environment with
define, let, or as an argument to a function.

– set! does not return a value.

Review: mutable state
(define times-called 0)
(define (function)

(set! times-called (+ 1 times-called))
times-called)

• Notice that functions that have side-effects or use mutation are the only
functions that need to have bodies with more than one expression in them.

• Wouldn't it be nice to not have the times-called variable cluttering up the
global frame?

Lexical scope to the rescue!
(define (function)

(let ((times-called 0))
(set! times-called (+ 1 times-called))
times-called))

• Why does this not work?
– The let is executed when the function is called. We want it to be

executed when the function is defined.

(define function
(let ((times-called 0))

(lambda ()
(set! times-called (+ 1 times-called))
times-called)))

Example use: callbacks
• A common idiom: Library takes functions to apply later, when an event

occurs:
– When a key is pressed, mouse moves, data arrives.
– When the program enters or leaves some state (e.g., a turn in a game

begins or ends).

• Most callback libraries use a higher-order function to setup a callback.

Example Racket GUI with callback 1
; Make a frame by instantiating the frame% class

(define frame (new frame% (label "Example")))

; Make a button in the frame

(define btn (new button% (parent frame)
(label "Click Me")
(callback (lambda (button event)

(send btn set-label "Hello!")))))

; Show the frame by calling its show method

(send frame show #t)

Example Racket GUI with callback 2
; Make a frame by instantiating the frame% class

(define frame (new frame% (label "Example")))

; Make a button in the frame

(define btn (new button% (parent frame)
(label "Click Me")
(callback (lambda (button event)

(send btn set-label
(number->string (function))))))

; Show the frame by calling its show method

(send frame show #t)

Example Racket GUI with callback 3
; Make a frame by instantiating the frame% class

(define frame (new frame% (label "Example")))

; Make a button in the frame

(define btn (new button% (parent frame)
(label "Click Me")
(callback (let ((count-clicks 0))

(lambda (button event)
(set! count-clicks (+ 1 count-clicks))
(send btn set-label

(number->string count-clicks))))))

; Show the frame by calling its show method

(send frame show #t)

Implementing an ADT
As our last pattern, closures can implement pseudo-classes in an object-oriented
style.

– "Pseudo" because you don't have things like polymorphism,
public/private variables, etc.

– Good illustration of the power of closures.

The actual code is advanced/clever/tricky, but has no new features.
– Combines lexical scope, closures, and higher-level functions.
– Client use is not so tricky.

(define (new-stack)
(let ((the-stack '()))

(define (dispatch method-name)
(cond ((eq? method-name 'empty?) empty?)

((eq? method-name 'push) push)
((eq? method-name 'pop) pop)
(#t (error "Bad method name"))))

(define (empty?) (null? the-stack))
(define (push item) (set! the-stack (cons item the-stack)))
(define (pop)

(if (null? the-stack) (error "Can't pop an empty stack")
(let ((top-item (car the-stack)))

(set! the-stack (cdr the-stack))
top-item)))

dispatch)) ; this last line is the return value
; of the let statement at the top.

New stuff!
• A little more about set! and mutation.

• Delayed evaluation.

Set!
• Yes, Racket really has assignment statements

– But used only-when-really-appropriate!

• For the x in the current environment, subsequent lookups of x get the result
of evaluating expression e

– Any code using this x will be affected
– Like C++/Python’s x = e

• Once you have side-effects, sequences are useful:

(set! x e)

(begin e1 e2 … en)

Example

Example uses set! at top-level; mutating local variables is similar

Not much new here:
– Environment for closure determined when function is defined, but

body is evaluated when function is called

(define b 3)
(define f (lambda (x) (* 2 (+ x b))))
(define c (+ b 4))
(set! b 5)
(define z (f 4))
(define w c)

Top-level
• Mutating top-level definitions is particularly problematic

– What if any code could do set! on anything?
– How could we defend against this?

• A general principle: If something you need not to change might
change, make a local copy of it. Example:

• Could use a different name for local copy but do not need to.
• Called defensive copying --- used often in languages like C++ and Java.

(define b 3)
(define f

(let ((b b))
(lambda (x) (* 2 (+ x b)))))

cons cells are immutable
What if you wanted to mutate the contents of a cons cell?

– In Racket you can’t (major change from Scheme)
– This is good

• List-aliasing irrelevant
• Implementation can make a fast list? since listness is determined

when cons cell is created

This does not mutate the contents:

– Like Java: x = new Cons(42,null), not x.car = 42

(define x (cons 14 '()))
(define y x)
(set! x (cons 42 '()))
(define fourteen (car y))

mcons cells are mutable
Since mutable pairs are sometimes useful (will use them later in class), Racket
provides them too:

– mcons
– mcar
– mcdr
– mpair?
– set-mcar!
– set-mcdr!

Run-time error to use mcar on a cons cell or car on a mcons cell

