
CS 360
Programming Languages

Day 10 - Foldr

(define (length lst)

(if (null? lst) 0

(+ 1 (length (cdr lst)))))

(define (sum-list lst)

(if (null? lst) 0

(+ (car lst) (sum-list (cdr lst)))))

(define (map func lst)

(if (null? lst) '()

(cons (func (car lst)) (map func (cdr lst)))))

All of these have:
• A base case when the list is null (orange)
• A return value for the base case (green)
• A recursive case where we combine (red) something with the car of the list (purple)

with a recursive call on the cdr (blue)

One function to rule them all
(define (foldr func base lst)

(if (null? lst) base

(func (car lst)

(foldr func base (cdr lst)))))

foldr

(foldr func base lst)

func

1 func

2 func

3 base

Say lst = '(1 2 3)
• Foldr applies func repeatedly to pairs of

items, starting from the right end of the
list.

• The first two items are the last item in the
list and the base element.

• The function must be a function of two
items.
(f 1 (f 2 (f 3 base)))

• In general, for lst = (x1 x2 … xn)
• (f x1 (f x2 (f x3 (f … (f xn base)))…)

Examples
• (foldr + 0 lst)

• (foldr (lambda (item acc) (+ 1 acc)) 0 lst)

Examples with foldr
These are useful and do not use “private data”

These are useful and do use “private data”

(define (f1 lst) (foldr + 0 lst))
(define (f2 lst)

(foldr (lambda (x acc) (and (>= x 0) acc)) #t lst))

(define (f3 lo hi lst)
(foldr

(lambda (x acc)
(+ (if (and (>= x lo) (<= x hi)) 1 0) acc)) 0 lst))

(define (f4 g lst)
(foldr (lambda (x acc) (and (g x) acc)) #t lst))

You try:
• Write reverse using foldr.

• Write max using foldr.
• Try to make it so the "base" argument to foldr is not a

huge negative number. (write it this way first if it's
easier, then change it)

• Write map using foldr.

• Write filter using foldr.

